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Extremewrinkling of the nuclear lamina is
a morphological marker of cancer
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Tanmay P. Lele 1,2,9

Nuclear atypia is a hallmark of cancer. A recentmodel posits that excess surface area, visible as folds/
wrinkles in the lamina of a rounded nucleus, allows the nucleus to take on diverse shapes with little
mechanical resistance.Whether thismodel is applicable to normal and cancer nuclei in human tissues
is unclear. We image nuclear lamins in patient tissues and find: (a) nuclear laminar wrinkles are present
in control and cancer tissue but are obscured in hematoxylin and eosin (H&E) images, (b) nuclei rarely
have a smooth lamina, and (c) wrinkled nuclei assume diverse shapes. Deep learning reveals the
presence of extreme nuclear laminar wrinkling in cancer tissues, which is confirmed by Fourier
analysis. These data support a model in which excess surface area in the nuclear lamina enables
nuclear shapediversity in vivo. Extreme laminarwrinkling is amarker of cancer, and imaging the lamina
may benefit cancer diagnosis.

Nuclear morphological alterations, or nuclear atypia, have been associated
with human cancers for over 150 years1. Nuclear atypia is critical in the
diagnosis of breast carcinoma2, breast ductal carcinoma in situ (DCIS)3,
thyroid carcinoma4, skin carcinoma5, ovarian carcinoma6, andprecancerous
dysplasia of the larynx7. Nuclear atypia includes features such as larger
nuclear size, altered heterochromatin, more prominent nucleoli, and
nuclear shape alterations8. How nuclear shapes become abnormal in cancer
is not understood.

Variations in nuclear shapes may result from changes in the
mechanical properties of the nucleus in cancer9. Indeed, cancer nuclei tend
to be softer than normal nuclei10, due to alterations in nuclear lamin levels,
particularly a decrease in lamin A/C levels11. Lamin A/C is a component of
the nuclear lamina, a stiff two-dimensional sheath that underlies the nuclear
envelope. The resistance of the nuclear lamina to extension and the resis-
tanceof nuclear contents to volume compressionunderlie the stability of the
nucleus to changes in shape12–14. A loss of lamin A/C eliminates the resis-
tance to areal extension, resulting in irregular nuclear shapes.

However, the nuclear lamina resists extensional deformation only in
extremenuclear shapeswhere the lamina is smooth12,15, such as theflattened
nuclei in cell culture.We andothers have reported that thenuclear lamina in

non-extreme shapes, such as those in 3D culture or in elongated or rounded
nuclei, tend to form folds and wrinkles16–24. These folds, which we have
quantified as excess surface area relative to a sphere of the same volume as
thenucleus25, imply that thenuclear laminadoesnot resist extensional strain
so long as these folds are present. The presence of excess area in the lamina
provided support for a recent ‘drop model’ of nuclear shaping in which the
nuclei offer littlemechanical resistance to deformation as long as these folds/
wrinkles in the nuclear lamina allow them to take on diverse shapes26. The
model predicts that nucleiwill be soft or compliant in human tissue cells and
become stiff only when the lamina is smooth, consistent with recent
measurements15. Given that a smooth lamina is present only in extreme
nuclear shapes, such as flattened or elongated nuclei, nuclei with a smooth
lamina shouldbe rare in vivo, as cells andnuclei in a3Denvironment are less
likely to be flattened.

Here, we tested the following predictions of this model for nuclear
shaping in human tissues: (a) nuclear laminar folds andwrinkles are present
in cells in diverse tissues, (b) nuclei with a smooth lamina are relatively rare,
and c)nuclei assumeawide rangeof shapeswhenwrinkles/folds arepresent.
We further determined whether laminar wrinkling is a quantifiable, diag-
nostically valid morphological marker of human cancers27.
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Results
Nuclei in diverse control and cancer tissues have a wrinkled
nuclear lamina
The drop model predicts that rounded nuclei contain laminar folds/wrin-
kles. Supplementary Fig. 1 illustrates this, where MDCK cells in 2D culture
are bothflatter and lesswrinkled than those in an acinus, consistentwith the
hypothesis that nuclei geometrically develop folds in their rounded shapes.
We reasoned that in contrast to cultured cells, epithelial nuclei in human
patient tissues are unlikely to be flattened because cells in vivo do not adhere
to flat and stiff smooth surfaces but rather adhere to a three-dimensional
extracellular matrix. Thus, there should be folds and wrinkles in the nuclear
lamina in normal as well as cancer tissues, unless cancer causes nuclear
flattening or reduces the area of the nuclear lamina at a constant nuclear
volume. Therefore, we imaged the nuclear lamina in diverse patient tissues,
including grade 1–3 cancer tissues and cancer adjacent or normal tissues.
We immunostained formalin-fixed paraffin-embedded (FFPE) human
tissue microarrays for lamin B1 and pan-cytokeratin as a marker of normal
epithelial and carcinoma cells and performed high-resolution confocal
microscopy using head and neck, skin, ovarian, breast, colon, and thyroid
tissues (Fig. 1). Most nuclei in cytokeratin-stained cells had some degree of
folding/wrinkling in the nuclear lamina, in both control and cancer tissues.
The only tissue that had predominantly nuclei with a smooth lamina was
pure breast ductal carcinoma in situ (DCIS). Patients with DCIS who also

had invasive carcinoma elsewhere had a visually higher percentage of
nuclear wrinkling than those with pure DCIS. These data confirm our
predictions that nuclei in diverse normal and cancer tissues in vivo contain
folds/wrinkles in the nuclear lamina, and nuclei with a smooth lamina are
rare in vivo. Visual inspection, whichwas also shown quantitatively by deep
learning in Fig. 3, suggested an increased prevalence of laminar wrinkling in
all cancer types relative to controls.

Nuclei with a wrinkled lamina should assume diverse shapes because
there is little mechanical resistance to shape deformation14. In contrast,
nuclei with smooth lamina should be “stiff” to deformation, resulting in a
narrower range of shapes. To test this prediction, we compared shapes in
DCIS, where the laminawas smoother, vs. invasive breast carcinoma, where
nuclei were wrinkled.We computed the perimeter of the shapes in excess to
that of a circle of the same area. The standard deviation of the excess
perimeter was significantly higher in invasive cancer compared to DCIS,
confirming that nuclear shapes are highly variable when there are more
folds/wrinkles in the nuclear lamina (Fig. 2a). The diversity of nuclear
shapes in wrinkled nuclei in invasive carcinoma as opposed to smooth
nuclei in DCIS is also apparent visually (Fig. 2b).

Nuclear wrinkles are not an artifact of tissue processing
Although FFPE samples are the workhorse of pathological diagnosis, and
nuclear abnormalities observed in these samples inform routine diagnosis,

Fig. 1 | Nuclei in diverse control and cancer tissues
have a wrinkled lamina. a Formalin-fixed paraffin-
embedded (FFPE) tissue stained for lamin B1 (yel-
low or gray) and pan-cytokeratin (magenta), imaged
at 20× (left) and 60× (middle). The right columns
show zoomed regions from the 60× image.Head and
Neck (HN) tissue. b Skin (SK). CAT: Cancer Adja-
cent Tissue. cOvarian (OV). d Breast (BR). e Colon
(CO). f Thyroid (TH). Scale bars are 100, 20, and
5 µm for 20×, 60× inset, and 60× zoom, respectively.
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FFPE sample preparation may contribute to nuclear wrinkling. Therefore,
we stained frozen, acetone-fixed normal, and breast cancer tissue for lamin
B1. Unlike FFPE tissue, which is fixed in formalin for 24 to 48 h, our frozen
tissuewas snap-frozen in the gas phase of liquidnitrogen after embedding in
an optimum cutting temperature compound and was then fixed for only
15min in acetone. Our frozen tissue did not undergo the FFPE heat- and
pH-based antigen retrieval process to reduce excessive crosslinking from
lengthy formalin fixation. Unlike FFPE tissue, which is washed with xylene

and ethanol, frozen tissue is air-dried before blocking. Despite these major
processing differences, nuclear wrinklingwas also observed in frozen cancer
and control tissues (Fig. 2c). As shrinkage due to formalin fixation28,29 or
other factors30may cause nuclear wrinkling, we examined some FFPE tissue
samples with shrinkage, indicated by blank spaces31, and found cases with
smoothnuclei in these regions, demonstrating that tissue shrinkagedoesnot
necessarily result in wrinkled nuclei (Fig. 2d). Further, we found many
examples of adjacent smooth and wrinkled nuclei in the same FFPE tissue

Fig. 2 | Nuclear wrinkles are not an artifact of tissue processing and allow nuclei
to assume diverse shapes. a Excess perimeter distribution for pooled ductal carci-
noma in situ (DCIS) patient nuclei and pooled breast cancer nuclei. Mean values
were calculated from DCIS (n = 1882) and invasive cancer (n = 4575) nuclei. Error
bars present standard deviations. b Collage of nuclei observed in formalin-fixed
paraffin-embedded (FFPE) DCIS tissue sample (left) and invasive cancer samples
(right) stained for lamin B1. c Frozen normal and cancer breast tissue fixed with

acetone and stained for lamin B1. Scale bar is 5 µm. d Top: FFPE tissue section
exhibiting shrinkage in the form of empty spaces (visible in brightfield) stained for
lamin B1 (yellow) and pan-cytokeratin (magenta). Scale bar is 20 µm for 60× and
5 µm for zoomed. Below are zoomed regions from the lamin B1 image above (gray).
e FFPE tissue sections featuring adjacent smooth and wrinkled nuclei. Scale bar is
5 µm. All images were taken at 60×.
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sample for diverse tissue types (Fig. 2e). Finally, as processing artifacts
cannot explain the systematic and reproducible differences in nuclear
laminar wrinkling across tissue types (Fig. 1), it is very unlikely that nuclear
wrinkles are sample preparation artifacts.

Extreme nuclear wrinkling is a morphological feature of diverse
cancers
Our results demonstrated that thenuclear lamina inboth control and cancer
tissues contains folds/wrinkles, but nuclear laminar irregularities appeared
to be more common in cancer compared to control tissue (Fig. 1). To
quantify wrinkling, we used deep learning to classify nuclear laminar irre-
gularities. Based on visual inspection of thousands of nuclei, we chose five
classification categories, (1) out-of-focus/wrongly-cropped nuclei, (2)
smooth nuclei, (3) nuclei with low frequency contour waviness, (4) nuclei
with high frequency contour waviness, and 5) nuclei with inner wrinkles
(Fig. 3a). We found that inner wrinkling and high frequency contour
waviness represented distinct types of extreme nuclear wrinkling. Inner
wrinkles appeared due to deep invaginations in the lamina, while surface
wrinkling without deep invaginations appeared as high frequency contour
waviness, which corresponds closely with the “star-like” or “garland-like”
nuclei reported in emerin-stained thyroid carcinoma samples32,33.

To train the deep learning algorithm, we used Cellpose34 to segment
and crop nuclei from confocal microscopy images of control and breast
cancer tissue and then sorted them manually into the five nuclear shape
categories. Only nuclei in pan-cytokeratin-expressing cells that passed a
focus test were included in the analysis, thereby excluding about 45% of
nuclei. These cropped images were used to train a multi-class classifier
(Fig. 3b).We implemented a transfer learning approach using a pre-trained
ResNet50 model, which was fine-tuned to our specific dataset (see meth-
ods). The deep learning model was trained on several thousand segmented
nuclei, with a high overall classification accuracy of 90.26%, confirming the
robustness of the model. The model achieved a high overall F1-score of
0.9014 and an area under the receiver operating characteristic curve (AUC)
value of 0.9809, indicating excellent precision, recall, and discriminative
ability across classes. Class-specific performance, expressed in the confusion
matrix, was 88.21% for smooth nuclei, 90.65% for low frequency contour
waviness, 94.29% for high frequency contour waviness, 90.63% for inner
wrinkles, and 86.02% for less typical nuclei (out of focus). We used this
model to classify nuclear wrinkling types across diverse cancer cell types
whose nuclei were cropped the same as the training data. The model sorted
thousands of nuclei from the control and cancer grades 1–3 for each tissue
type, with 50–80 patients per tissue type. Patient information is included in
Supplementary Table 1. Tumor grade was determined as the majority
decision based on the grades of two external pathologists and the grade
providedby the tissue supplier’s pathologists. In the fewcaseswhere all three
evaluations differed, we assigned the grade provided by the tissue supplier
company. Results were quantified using a corrected, normalized count
considering individual class accuracies.

We found that low frequency contour waviness in the nuclear lamina
was the most prevalent wrinkling type in every cancer and control tissue
(Fig. 3c, Supplementary Table 2, and Supplementary Data 1), consistent
with our observations in Fig. 1, in which even control tissues exhibited
wrinkling. Breast, skin, and thyroid cancers exhibited a similar pattern, with
smoother nucleimore prevalent in adjacent tissue and reduced in cancerous
tissues. Conversely, high frequency wrinkles were consistently more fre-
quent in cancer tissue compared to control tissue in these three cancer types.
Notably, breast DCIS tissue had a high fraction of smooth nuclei, consistent
withour visual observations (Fig. 1).Head andneck cancer tissueshad fewer
smooth nuclei in cancer tissue compared to control. Nuclei with inner
wrinkles were more prevalent in this cancer type compared to high fre-
quency contours. Ovarian and colon cancer tissues had a low frequency of
smooth nuclei in adjacent tissue, consistent with our visual observations
(Fig. 1). Although the high frequency contours were much more prevalent
in tissue from ovarian cancer vs. the control, tissue from colon cancer
showed more subtle differences in extreme wrinkling compared to control

tissue. Collectively, these findings show that extreme wrinkling of the
nuclear lamina, comprising high frequencywrinkles and innerwrinkles, is a
morphological hallmark of diverse cancers.

We also found that extreme nuclear wrinkling was more prevalent in
ovarian, breast, colon, and thyroid cancers that had lymph node involve-
ment (Fig. 4 and Supplementary Table 3). We used the TNM classification,
where an N value greater than or equal to 1 represents lymph node invol-
vement. This result, consistent with the trend observed in tumor grades
(Fig. 3c), indicates that extreme nuclear wrinkling may be associated with
cancer progression andmetastatic potential. In this analysis, head neck, and
skin tumorswere excludeddue to the lownumberof lymphnodemetastases
observed in these tissues in our dataset.

Elliptical Fourier analysis reveals that laminar contour irregularity
is higher in cancer tissues
To confirm that the high frequency laminar contour waviness revealed by
the deep learning model was more common in cancers, we also used
elliptical Fourier analysis, which specifically quantifies contour
irregularities35. For the Fourier analysis,weneeded accurate segmentationof
nuclear contours; however, segmentation of the nucleus using Cellpose was
unsuccessful as it tended to smooth out micron and sub-micron variations
in thenuclear contour.Given that imagingnuclear lamins produces a clearly
delineated thin boundary, we adapted a previously developed method used
to segment microtubules36 to segment the nuclear shape (Supplementary
Fig. 2a). Briefly, the method approximated nuclear segmentation using the
deep learning program Cellpose, then normal lines were computationally
drawn around theCellposemask, and the point on each linewithmaximum
intensitywas taken as themost likely location of the nuclear lamina. Limited
smoothing connected the points around the nuclear contour. This method
resulted in clear and visually accurate segmentation of the nuclear contour
(Supplementary Fig. 2a). We performed elliptical Fourier analysis on the
segmented contours and calculated the elliptical Fourier coefficient (EFC)
ratio for eachnucleus (seemethods for the definition of this parameter). The
EFC ratio varied inversely with the visible level of nuclear irregularity and
was a much more sensitive metric than the commonly used solidity para-
meter (Supplementary Fig. 2b). Our segmentation and EFC ratio quantifi-
cationmethods applied toa standardfieldof vieware shown inaheatmap in
Supplementary Fig. 2c.

Using the same approach to restrict our analysis to only in-focus
nuclei from cytokeratin-stained cells described above, we compared the
distributions of EFC ratios visually via kernel density estimate (KDE)
plots (Fig. 5) and formally via robust statistical tests for means and
scales (standard deviations) between control and pooled cancer grades
and between each cancer type. As a positive control, we also computed
nuclear area, which is higher in cancer8, and compared their distribu-
tions. To address potential imbalances in the number of nuclei per
sample and their impact on the statistical analysis, Nnuclei distinct nuclei
were randomly selected from the set of all imaged nuclei per sample,
separately for each tissue type. A total of R = 100 random data subsets
were generated for each tissue type and the common number Nnuclei of
nuclei in each subset was set to the minimum number of nuclei imaged
across all samples within that tissue type (Supplementary Table 4).
Subsequently, we performed KDE analyses separately in each random
data subset. The estimated kernel densities from the R = 100 random
subsets were combined by averaging (i.e., mixing the densities with
equal weights). The computed test statistics obtained across the random
replicates were also combined via averaging (meta-analysis), and the
resulting approximate chi-squared p-values were derived from the
averaged test statistics (Fig. 5). EFC ratios varied between control and
cancer tissue depending on cancer type, with a lower EFC ratio for head
and neck and skin cancer compared to control tissues and a higher EFC
ratio for colon cancer. In ovarian, breast, and thyroid cancer, there was a
trend toward lower EFC ratios compared to control tissues, but dif-
ferences in the mean values lacked statistical significance. In contrast,
nuclear area was higher in cancer tissue compared to control tissue in all
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cancer types. These results suggest that nuclear contour irregularity is a
marker for a subset of cancers. Given that deep learning detects dif-
ferences in extreme wrinkling across all cancers, the small differences in
EFC ratios in some cancers may reflect the inability of elliptical Fourier
analysis to fully capture nuclear wrinkling, especially folds inside the
nuclear body. Also, the small differences in some cases may be due to
low frequency contour waviness, which is similar across cancer and

control tissues and may be as frequent or more frequent than high
frequency waviness. This might mask the contribution of low EFC
ratios, which represent the high frequency waviness, in the
comparisons.

To address this complication, we performed a linear discriminant-
based posterior probability analysis to compare the probabilities of tumor
grade or control for a given EFC ratio magnitude. We calculated the
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posterior probabilities, defining discrimination boundaries of cancer adja-
cent tissue vs. tumor grades under a uniform/flat prior assumption for
tumor grade proportions, using a linear discriminant analysis of log-
transformed nuclear EFC ratios, nuclear areas, and nuclear aspect ratios
(Supplementary Fig. 3). EFC ratio values associated with control vs. cancer
nuclei were significantly different with a clear separation between control
tissue and cancer grades. Consistentwith the results obtained using the deep
learning analysis, low EFC ratios, corresponding to high frequency contour
waviness, were especially predictive of cancer grades. These results confirm
the results of the deep learning analysis that cancer is characterized by
extreme nuclear wrinkling.

Discussion
Nuclear atypia is a common characteristic of human cancers. How nuclear
shapes are established and maintained in human tissues and how they
become abnormal in cancers is not understood. The drop model, which
explains the role of the nuclear lamina in nuclear shaping25,26, predicts that a
wrinkled nucleus can assume a range of shapes with little mechanical
resistance. As the dropmodel was based only on in vitro experiments, here,
we explored some predictions of the model for nuclear shapes in tissues.

We found that the nuclear lamina in diverse control and cancer tissues
had folds/wrinkles accompanied by a wide variety of nuclear shapes. In a
minority of tissues, the nuclear lamina was smooth, as it is in in vitro cul-
tures, which is likely because nuclei in tissues rarely take on extremely

flattened shapes as they do in culture. Further, we would expect pre-
dominantlywrinklednuclei inpatient tissues, as the lamina is assembled in a
wrinkled state during mitosis because it forms around the non-smooth
surface presented by postmitotic chromosomes37. In fact, this characteristic
is directly visible in patient tissues (Supplementary Fig. 4). Our findings
support the hypothesis thatwrinklednuclei are compliant15, yielding diverse
nuclear shapes in tissues.

Nuclear wrinkling was common across diverse tissues; however,
extreme wrinkling was more prevalent in cancer tissues than in control
tissues in all cancer types studied. We quantified extreme wrinkling using
both deep learning and elliptical Fourier analysis. Both methods demon-
strated that extremewrinkling,marked by increasedwaviness of the nuclear
contour, was more frequent in cancer tissue.

The gold standard for cancer diagnosis is hematoxylin and eosin
(H&E) imaging of tissue samples. Although nuclear shape irregularities
have been quantified from H&E images38–47, it is unlikely that the high
frequency wrinkling observed in lamin stains is visible in H&E images
because hematoxylin yields a solidly stained nucleus, precluding sensitive
visualization of nuclear contours. When we stained and imaged a tissue
section using H&E and an adjacent section for lamin B1, we found that the
laminB1 stained nuclei showed the greater spatial detail that is necessary for
visualizing wrinkling compared with the H&E images. Images of nuclei
from the same field of a tissue sample immunostained for lamin B1 and
counterstained with DAPI (4’,6-diamidino-2-phenylindole), which also

Fig. 3 | Extreme nuclear wrinkling is a morphological feature of diverse cancers.
a Examples of nuclei sorted into classes 0–5 for deep learning model training. 0 =
invalid nuclei, 1 = smooth, 2 = low frequency contour waviness, 3 = high frequency
contour waviness, and 4 = inner wrinkles. bResNet50 architecture of our model. An
input image is processed through a 7×7 convolutional layer followed bymax pooling.
The network includes multiple residual learning blocks increasing in depth and
complexity, each containing convolutional layers of varying filter sizes, with skip
connections to ensure efficient training and feature extraction by mitigating the
vanishing gradient problem. After feature extraction, we used an average pooling
layer and a fully connected layer with a softmax function to classify the images into
the five categories. c Bar plots showing the normalized corrected count of nuclei in

each class. i. Head and neck; n = 1851, 2605, 1619, 1943, 1737 nuclei for adjacent,
grades 1–3, respectively. ii. Skin; n = 848, 4180, 1637, 1487, 890 nuclei for adjacent,
basal cell carcinoma (BCC), grades 1–3. iii. Ovary; n = 197, 3009, 2685, 10044, 1933,
3223, 4507 nuclei for control, mucinous, low grade serous, high grade serous, grades
1–3 endometrioid adenocarcinoma. iv. Breast;n = 3223, 2095, 859, 4296, 1054 nuclei
for adjacent, ductal carcinoma in situ (DCIS), grades 1–3. v. Colon; n = 1458, 2147,
7011, 2521 nuclei for adjacent, grades 1–3. vi. Thyroid; n = 303, 10412 nuclei for
normal and cancer, respectively. Error bars present a 95% confidence interval of the
mean. *False discovery rate adjusted p < 0.05 by the Benjamini–Hochberg
procedure.

Fig. 4 | Nuclear wrinkling and lymph node invol-
vement. Bar plots show the normalized corrected
count of nuclei in each wrinkling class. i. Ovary;
n = 134, 16944, 2414 nuclei for control, TNM grade
N0, and N1, respectively. ii. Breast; n = 2541, 5124,
2489, 510 nuclei for control, N0–N2. iii. Colon;
n = 1458, 7479, 2514, 1686 nuclei for control,
N0–N2. iv. Thyroid; n = 303, 8395, 1601 nuclei for
control, N0, and N1. Error bars present a 95%
confidence interval of the mean. *False discovery
rate adjusted p < 0.05 by the Benjamini–Hochberg
procedure. Patient information is in Supplementary
Table 3.
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Fig. 5 | Elliptical Fourier analysis reveals higher contour irregularity in cancer.
Kernel density plots show the distribution of elliptical Fourier coefficient (EFC)
ratios and nuclear areas for control and cancer tissues and for different tumor grades.
The estimated kernel densities from the R = 100 random subsets were combined by
averaging (see Methods). a Head and neck tissue; n = 1508, 1951, 1336, 250, 1603,
5140 nuclei for adjacent, grades 1–3, and pooled tumor grades, respectively. b Skin
tissue; n = 762, 3724, 1658, 1509, 907, 4074 nuclei for adjacent, basal cell carcinoma
(BCC), grades 1–3, and pooled grades. c Ovarian tissue; n = 58, 1530, 2027, 7085,

1382, 2074, 3251, 6707 nuclei for control, mucinous, low grade serous, high grade
serous, grades 1–3 endometrioid adenocarcinoma, and pooled grades. d Breast
tissue; n = 2455, 1918, 819, 3859, 1054, 5732 nuclei for adjacent, ductal carcinoma in
situ (DCIS), grades 1–3, and pooled grades. eColon tissue; n = 904, 1416, 5987, 2110,
9513 nuclei for adjacent, grades 1–3, and pooled grades. f Thyroid tissue; n = 69,
6030 nuclei for adjacent and cancer. p values for equality of means and homogeneity
of scales obtained from the Kruskal-Wallis test and the Fligner test and adjusted
using Benjamini-Hochberg false discovery rate corrections are labeled.
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stains DNA, confirmed this observation (Supplementary Fig. 5). The
inability of DNA stains to produce detailed visualizations of nuclear con-
tours is supported by studies using lamin27 or emerin32,33,48,49 stains, which
have diagnostic or prognostic utility. In emerin-stained breast tissue in
which nuclei were classified manually as having either low or high nuclear
envelope pleomorphism (NEP), there was a correlation between NEP and
lymph nodemetastasis48. This study identified folds in the nuclear contours
of breast cancer cells but not in control tissues, perhaps because of the few
control samples. In contrast, we observed nuclear folds in many of our
control samples. Other studies used emerin stains in thyroid tissue samples
to assist in the diagnosis of papillary thyroid carcinoma in borderline cases
by providing a clearer image of the nuclear shape33,49. In these studies, a
pathologist classified emerin-stained nuclei into different shape categories,
including nuclei with garlands that we would consider to have high fre-
quency contourwaviness, andnucleiwith grooves that appeared to be a type
of inner nuclear wrinkling.

Othershaveused laminor emerin stains toquantifynuclear shape.One
group used deep learning on images of lamin-stained ovarian tissue and
datasets of nuclear shape factors from lamin-stained images to successfully
sort nuclei into healthy or cancer groups. However, they did not consider
nuclear wrinkling and did not restrict the analysis to any cell types in their
classification50. Another study of wrinkling in lung cancer measured the
difference in perimeter between hematoxylin-stained and emerin-stained
nuclei to estimate the occurrence of nuclear grooves or cytoplasmic
inclusions51. Although this study indirectly quantified nuclear wrinkling, it
required two nuclear stains to calculate the less precise excess perimeter
value. In contrast, our study identified wrinkled nuclei in both cancer and
control tissue and used deep learning and quantitative techniques to assess
the degree of wrinkling. We found that segregating nuclei into the correct
classes revealed extremewrinkling as a hallmark of cancer. The quantitative
Fourier analysis of nuclear contours supported this finding.

Based on our results, we suggest that using lamin-stained images as
input for AI/deep learning in digital pathology to determine the extent of
nuclear wrinkling could improve cancer diagnosis and prognosis for mul-
tiple tissue types, especially head and neck, skin, breast, and thyroid cancers.
Lamin staining is a relatively inexpensive addition to standard pathology
workflows. Although we used fluorescence microscopy, immunohis-
tochemistry is an alternative method that is more common in pathology
labs. Imaging the folds/wrinkleswill likely require at least 40×magnification
with a high numerical aperture ( ~ 1). Deconvolution of images obtained
with a camera can result in images that approach the image quality from a
confocal microscope32.

One caveat with our analysis is that, depending on the way tissues are
sectioned and the extent of nuclear wrinkling, a wrinkled nucleus may
appear more or less wrinkled52, or even smooth. However, as we imaged
thousands of nuclei per condition (grade), these differences should be
averaged across and even within samples.

The cause of extremenuclearwrinkling in cancer tissues is not clear. To
determine whether nuclear indentation by perinuclear actin explains
nuclear laminar wrinkles17, we immunostained a tissue sample for lamin B1
and F-actin (Supplementary Fig. 6). Some cells contained visible perinuclear
F-actin. In half of the cells that contained perinuclear F-actin, the F-actin
fiber was associated with at least one laminar wrinkle. Nevertheless, even in
these nuclei, other wrinkles were not visibly associated with perinuclear
actin. Therefore, perinuclear actin does not explain most of the nuclear
wrinkling observed in our tissue sections. Also, a visual inspection of con-
tiguous tumor cell clusters did not indicate an obvious trend in wrinkling
from the center to the edge of the clusters (Supplementary Fig. 7), indicating
that location in the tumor does not explain higher wrinkling.

We have previously proposed that wrinkling may be induced geo-
metrically in nuclei by rounding up flattened cells12. The rounding of a
flattened nucleus with a smooth lamina at a constant volume induces
wrinkles geometrically because a sphere provides theminimumsurface area
for a given volume. Likewise, cell roundingmay occur in some cancers, due
perhaps to crowding of proliferating cells. Further, the area of the nuclear

lamina may be higher for a given nuclear volume in cancer compared to
control tissue. Alternatively, irregular shapes may result from the depletion
of lamin A/C, which occurs in diverse cancers53 and is associated with a
worse prognosis54,55. In vitro, migrating lamin A/C null mouse embryonic
fibroblasts deform without an apparent limit on areal expansion when they
are indented by external, slender obstacles56. Consistent with these prior
experiments, we observed a significantly lower lamin A/C:B1 ratio in breast
cancer tissue compared to control tissue (Supplementary Fig. 8 and Sup-
plementary Table 5), but no differences between breast cancer tissues of
different grades. Among different cancer types, there were only minor dif-
ferences in lamin A/C:B1 ratios between control and cancer tissue. Thus, a
decrease in the lamin A/C:B1 ratio does not explain the systematic differ-
ences in nuclear wrinkling between control and cancer tissue.

Overall, we demonstrated that the nuclear shapes observed in diverse
tissues are consistentwith thedropmodel inwhichnuclei resist deformation
only when the nuclear lamina is smooth12 and that a difference in the extent
and type of nuclear laminar wrinkling is a characteristic morphological
feature of diverse human cancers. The difference in nuclear wrinkling was
identified by deep learning algorithms and quantitative analysis of seg-
mented nuclear contours. Thus, extreme nuclear wrinkling is a potential
morphological cancer biomarker that can be identified by digital pathology.

Methods
FFPE tissue immunostaining and imaging
Microarrays of 5-µm thick FFPE tissues (TissueArray) were deparaffinized
with xylene, rinsed in ethanol, and rehydrated with a gradient of ethanol to
deionized water. Heat-induced antigen retrieval was performed using a 1×
universal antigen retrieval solution (Abcam) in an instant pot on the high
setting for 20min. The tissue was rinsed and blocked with blocking buffer
(3%w/v bovine serum albumin, 1% v/v goat serum, and 0.1%Triton X-100
in phosphate-buffered saline (PBS)). Samples were incubated overnight at
4 °C with the primary antibodies in blocking buffer, including rabbit anti-
laminB1 (Abcam,Ab229025, diluted1:2000),mouse anti-laminA/C (Santa
Cruz Biotech, sc-376248, diluted 1:100), and guinea pig anti-pan-
cytokeratin antibody (LS-Bio, LS-B16812, diluted 1:50). Tissue was then
incubated with secondary antibodies in PBS, including goat anti-rabbit
Alexa Fluor 405 (Invitrogen, A48264, diluted 1:500), goat anti-rabbit Alexa
Fluor 488 (Invitrogen, A11034, diluted 1:500), goat anti-guinea pig Alexa
Fluor 594 (Invitrogen, A11076, diluted 1:500), and goat anti-mouse Alexa
Fluor 647 (Invitrogen, A21235, diluted 1:500) for 1 h at room temperature
(RT). DNA was counterstained with DAPI (Thermo Fisher Scientific,
diluted to 1 µg/ml) for 5min. Tissues were rinsed and mounted with Dia-
mond Antifade mountant (Thermo Fisher Scientific) and imaged on an
Olympus confocal microscope FV3000 with 20× (N.A. = 0.80) and 60×
(N.A. = 1.50) objectives. Images for the lamin A/C:B1 ratio experiments
were collected with a 60× objective (N.A. = 1.30) at constant laser intensity,
gain, andoffset settings so that imaging settingswouldnot artificially change
staining intensity between imaging fields. Brightness and contrast
enhancements were applied to some images shown in the figures but not
applied to those used for calculations.

FFPE tissue H&E staining and imaging
Tissue was deparaffinized as described above, incubated with hematoxylin
for 3min, rinsed, exposed to a differentiator (0.3% v/v HCl in 70% ethanol)
for 2–3 s, rinsed, and treated for bluingwith Scott’s tapwater substitute. The
tissue was then treated with 80% ethanol before incubation with eosin for
10 s. The tissue was rinsed and treated with xylene, mounted with DPX
mountant (Sigma-Aldrich), and imaged on an Olympus confocal micro-
scopewith a 60×objective (N.A. = 1.50) and color camera (OlympusDP23).

Frozen tissue immunostaining
Unstained frozen tissue (OriGeneTechnologies)was storedat−80 °C.After
a brief thawing, the tissue was fixed in ice-cold acetone for 10min, which
was removed prior to air-drying the samples for 20min. The tissue samples
were rinsed, blocked, and immunostained as described above for FFPE
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tissue immunostaining. F-actin staining was performed overnight at 4 °C in
blocking buffer with mouse anti-F-actin (Abcam, ab205, diluted 1:100),
followed by incubation in PBS with goat anti-mouse Alexa Fluor 647
(Invitrogen, A21235, diluted 1:500) for 1 h at RT.

Cell culture, staining, and imaging
Human head and neck cancer cell line HN (Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH) was grown in a humidified
incubator at 37 °C and with 5% CO2 and cultured in Dulbecco’s Mod-
ified Eagle’s Medium with 4.5 g/l glucose (Corning), supplemented with
10% v/v donor bovine serum (Gibco) and 1% v/v penicillin/strepto-
mycin (Corning). HN cells were rinsed with PBS before fixing with 4%
paraformaldehyde (Alfa Aesar) for 15 min at RT. After treatment with
permeabilization buffer (0.1% Triton X-100 (Thermo Fisher Scientific)
and 1 mg/ml bovine serum albumin (Thermo Fisher Scientific) in PBS)
for 1 h and blocking in superblock (Thermo Fisher Scientific) for 30 min,
HN cells were exposed to primary antibodies in superblock overnight at
4 °C, including rabbit anti-lamin B1 (Abcam, Ab229025, diluted 1:500)
and mouse anti-lamin A/C (Santa Cruz Biotechnology, sc-376248,
diluted 1:200). Secondary staining was done at RT in PBS for 1 h and
40 min with goat anti-mouse Alexa Fluor 488 (Invitrogen, A32723,
diluted 1:200) and goat anti-rabbit Alexa Fluor 647 (Invitrogen, A21244,
diluted 1:200) antibodies. HN cells were imaged at 20× (N.A. = 0.80)
with constant laser power settings so that imaging settings would not
artificially change staining intensity between imaging fields.

MDCK cells were cultured in high glucose DMEM (Thermo Fisher
Scientific), supplemented with 10% v/v Plenty (Omeat/Plenty Bio) and 1%
v/v penicillin-streptomycin mix. For imaging of 2D MDCK cells, 35mm
glass bottom dishes were first coated with 1 μg/ml fibronectin (Corning) for
1 h, washed thrice with PBS, and seededwith cells. The cells were allowed to
spread andfixed for imaging. For 3Dacinar cultures,NuncLabTek II 8-well
chamber slides (Thermo Fisher Scientific, #155409) were coated with 15 μl
of growth-factor-reduced (GFR) Matrigel (Corning) in each well and
allowed to polymerize for at least 1 h at 37 °C. Then, the MDCK cells were
trypsinized from tissue culture plates and suspended in the growthmedium
supplemented with 2% v/v Matrigel at a final concentration of 5 cells/µl.
400 μl aliquot of cells was added to each well of the chamber slide, and the
cells were allowed to form acini for 7–12 days before fixation. The growth
medium was changed every 3–5 days. 2D and 3D acinar MDCK samples
were fixed with warm 2% paraformaldehyde for 10–15min at 37 °C and
washed thrice with PBS for 5min each. The cells were permeabilized using
0.5% Triton X-100 in PBS for 30min at RT, followed by 1-hour incubation
with an immunofluorescence buffer (130mM NaCl; 7 mM Na2HPO4;
3.5mM NaH2PO4; 7.7mM NaN3; 0.1% BSA; 0.2% Triton X-100; 0.05%
Tween-20) supplemented with 10% goat serum at RT. The samples were
incubated with rabbit anti-lamin A/C primary antibody (Abcam, diluted
1:1000) overnight at 4 °C, washed thrice with PBS, and incubated with goat
anti-rabbit Alexa Fluor 594 secondary antibody (Abcam, diluted 1:1000) for
2 h atRT. Fixed-cellfluorescence imagingof 2DMDCKcellswas performed
using an Olympus FV3000 confocal microscope at 60× (N.A. = 1.5),
whereas acini were imaged with an ImageXpress Ht.ai spinning disk con-
focal microscope (Molecular Devices) at 40× (N.A. = 1.15) with a 0.1 μm
step size between z-slices.

Transfection with siRNAs
Depletion of lamin A/C level was performed using siRNA transfection
according to the manufacturer’s protocol (Invitrogen). HN cells were
cultured in a 12-well plate in antibiotic-free media at transfection with
0.5% lipofectamine RNAiMAX transfection reagent (Invitrogen) and
0.5% siRNA (Dharmacon, siGENOMENon-Targeting siRNA Pool #2,
D-001206-14-05, target sequences: UAAGGCUAUGAAGAGAUAC,
AUGUAUUGGCCUGUAUUAG, AUGAACGUGAAUUGCUCAA,
UGGUUUACAUGUCGACUAA; LMNA siGENOME SMARTpool
siRNA, D-004978-01, target sequence: GAAGGAGGGUGACCU-
GAUA) in the reduced serumOpti-MEMmedium (Gibco). After 96 h,

transfected cells were passed onto fibronectin-coated dishes and
allowed to spread overnight before fixation the next day.

Segmentation of nuclear contour in tissue array images
Raw confocal images of tissue arrays were segmented using Cellpose34 for
the initial identification of nuclei, except for control ovarian tissue, where
high background and few epithelial nuclei necessitated manual generation
of masks by tracing around the nuclear contour. The generated nuclear
masks and the raw images were imported into MATLAB, where a custo-
mized MATLAB code was developed for precise segmentation and sub-
sequent nuclear morphometric analysis. Nuclei touching the image border
or below an empirically determined area threshold were eliminated to
remove small debris or imaging artifacts. Since the bulk masks generated
from Cellpose did not capture details like folds and wrinkles on nuclear
contours, a more precise segmentation approach was employed where the
intensity maxima were traced on each normal line along the bulk nuclear
periphery, achieving sub-pixel resolution for delineating precise nuclear
contours. Following precise segmentation, additional filters were applied to
refine the selection of nuclei of interest. A contrast filter calculated the lamin
intensity ratio between the maximum pixels and the pixels covered by
normal lines for each nucleus. Nuclei with a contrast ratio below 1.5, indi-
cating a blurry contour, were excluded. Similarly, a pan-cytokeratin filter
calculated the pan-cytokeratin intensity ratio between the ring area outside
the nucleus vs. inside.Nucleiwith apan-cytokeratin ratio below1, indicative
of non-epithelial cells, were also excluded.

Deep learning
For the nuclear morphological analysis, we implemented a deep
learning approach to classify the types of nuclear wrinkling (out of
focus/invalid nuclei, smooth, low frequency contour waviness, high
frequency contour waviness, and inner wrinkles). Nuclei identified by
the Cellpose algorithm that passed quality filters were cropped as
individual images. A custom MATLAB code was built to annotate the
five classes of the cropped nuclei from breast cancer tissue samples.
These annotated images served as inputs to train a multi-class classifier.
We implemented a transfer learning approach using a pre-trained
ResNet50 model57, which was fine-tuned to our dataset. Transfer
learning allowed us to utilize the comprehensive feature-detection
capabilities of ResNet50, which had been initially trained on ImageNet
dataset58, thereby accelerating our training process and enhancing the
model accuracy with limited data. ResNet50, a convolutional neural
network architecture known for its deep residual learning framework, is
particularly effective in handling vanishing gradients, allowing the
training of much deeper networks. This model features 50 layers,
including residual blocks with skip connections to preserve gradient
flow and bottleneck layers that reduce computational burden as they
maintain processing depth. ResNet50 uses global average pooling to
reduce overfitting and decrease the total number of parameters,
enhancing its efficiency.

The training pipeline included a series of data augmentation techni-
ques to enhancemodel robustness and address data imbalance due to varied
representations of nuclear types across samples. Transformations included
resizing to 224 × 224 pixels, random horizontal and vertical flips, rotations
up to 15 degrees, color jittering for brightness, contrast, and saturation
adjustments, random affine transformations, and center cropping to
maintain focus on the nucleus. Normalization was performed with specific
mean and standard deviation values typical for pre-trained networks on
ImageNet. To counter data imbalance, these augmentation techniques were
combined with resampling methods to equalize class presence in the
training set.We expanded its applications to predict nuclearwrinkling types
in other cancer types thatwere not in the initial dataset, as nuclear shapes are
similar across each tissue type, enabling generalization of our model across
all tissue types studied. Resultswere quantified using a corrected normalized
count, considering individual class accuracies, providing a robust assess-
ment of nuclear morphological variations.
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Nuclear morphometric analysis
Nuclear irregularity was quantified using an elliptical Fourier analysis, as
reported previously35. This approach approximates nuclear shapes by
decomposing the shape into a series of harmonic ellipses59. The precise
segmented contour was fitted using a series of elliptic harmonics, defined by
Fourier series coefficients that were calculated from the x and y coordinates
of the nuclear outline. 15 harmonic ellipses were employed in this study to
effectively capture the complexity of irregular nuclei while avoiding over-
fitting smooth nuclei, which was verified by Fréchet distance calculations
(Supplementary Fig. 9) and was also suggested in the literature35,60. Each
single elliptic harmonic at different frequencies can be geometrically
visualized as a pair of orthogonal semiaxes. The first-frequency Fourier
coefficients describe a rough ellipsoidal shape, and the Fourier coefficients at
higher frequencies approximate more convoluted outlines. To quantify the
shape irregularity, EFC ratio is defined as the ratio of the length sum of the
major and minor semiaxes at the first frequency to the sum of semiaxes
lengths for the subsequent 14 harmonics at higher frequencies. A regular
nuclear contour, where the first-frequency elliptic harmonic captures most
of the contourwith small axis lengths at higher frequencies, has a larger EFC
ratio.Conversely, an irregular nuclear contour requires larger axes lengths at
higher frequencies, resulting in a lower EFC ratio. Other parameters such as
nuclear cross-section area A, perimeter P, solidity, and aspect ratio were
quantified using theMATLAB ImageProcessingToolbox. Excess perimeter
was calculated by

Excess perimeter ¼ P=Pcircle � 1 ð1Þ

where Pcircle is the perimeter of the circle and is geometrically related toA by

Pcircle ¼ 2
ffiffiffiffiffiffi

πA
p ð2Þ

To quantify the level of lamin based on staining brightness, the mean
pixel intensity was calculated within a peripheral area approximately 1 μm
wide surrounding the nuclear contour for each nucleus.

Statistical analyses
To compare the proportions of nuclei belonging to four different wrinkling
categories (smooth, low frequency, high frequency, and inner wrinkles as
determined by the deep learning classifier) across different cancer grades
and sites, we conducted a series of multi-class multinomial logistic regres-
sion models. We developed a separate model for each cancer site. These
models used the expected/corrected counts (raw counts determined by the
deep learning classifiermultipliedby theprobability of correct classification)
of nuclei in the four wrinkling categories asmultivariate responses, with cell
types (cancergrades andadjacent cells) serving as explanatory variables.The
models were fitted using the method of maximum likelihood. From each
fittedmodel,we (a) estimated theprobabilities (proportions) of eachnuclear
wrinkling category for adjacent and various cancer grades, along with their
95% confidence intervals, and (b) formally tested the differences between
the probabilities of each wrinkling category across different cancer grades
using marginal probability contrasts. To account for the multiplicity of
hypothesis tests, we applied the Benjamini–Hochberg false discovery rate
adjustment61,62. The results are presented in Fig. 3, which displays the esti-
mated probabilities of each wrinkling category (normalized corrected
counts)with their 95%confidence intervals representedbyvertical barswith
error whiskers. The corresponding pairwise test results are visualized
through horizontal lines.

To compare the distributions of nuclear EFC ratios and areas for
different cell types, we obtained kernel density estimates using default
Gaussian kernels as implemented in the density function in R for the
nuclear EFC ratios and areas, separately for each cell type—control,
BCC (skin), DCIS (breast), serous and mucinous (ovary), and cancer—
with individual grades in one set of analysis and all grades combined in
another. To address potential imbalances in the number of nuclei per
sample and their impact on the final KDE plots, as well as on the means

and scales comparisons, we applied randomdata subsampling to ensure
homogeneity in the number of nuclei per sample in each random subset.
Specifically, Nnuclei distinct nuclei were randomly selected from the set
of all imaged nuclei per sample, separately for each tissue type. A total of
R = 100 randomdata subsets were generated for each tissue type and the
common number Nnuclei of nuclei in each subset was set to the mini-
mumnumber of nuclei imaged across all samples within that tissue type
(Supplementary Table 4). KDE analysis was performed for the EFC
ratios and nuclear areas separately for the adjacent, pooled cancer, and
grade-specific cancer cells, and separately in each random data subset.
Comparisons of the means and scales for the nuclear measurements
were conducted using the Kruskal-Wallis test63 and the Fligner test64,
respectively, for both adjacent vs. pooled cancer cells (two-sample)
comparisons and adjacent vs. grade-specific cancer cells (multi-sample)
comparisons. The estimated kernel densities from the R = 100 random
subsets were combined by averaging (i.e., mixing the densities with
equal weights). The computed test statistics obtained across the random
replicates were also combined via averaging (meta-analysis), and the
resulting approximate chi-squared p-values were derived from the
averaged test statistics. This analysis was carried out separately for each
metric (EFC ratio; nuclear area), measure (mean; scale), comparison
(adjacent vs. pooled cancer; adjacent vs. grade-specific cancers), and
tissue combination. The multiplicity of the p-values was addressed
using Benjamini-Hochberg false discovery rate corrections61,62, and the
adjusted p-values are reported in Fig. 5.

To assess cancer grade-specific discriminative information embedded
in the nuclear wrinkling measurements, we performed a posterior prob-
ability analysis based on linear discriminants separately for each cancer site
and nuclear morphometric measurements (EFC ratio, area, and aspect
ratio). With a log-normal probability distribution assumption—effectuated
by a normality assumption on the log-transformed measurements—made
separately for each of the three nuclear morphometric measurements at
each cancer site, a linear discriminant analysis was performed to obtain the
discrimination boundaries for adjacent, BCC (skin), DCIS (breast), indivi-
dual cancer grade cells and all cancer cells combined (grouping all individual
grades). In the absence of reliable population-level (prior) estimates for the
prevalence/proportions of the different cancer grades, a flat/uniform
probability distribution allocating equal weights to the different cancer
grades was assumed. The flat prior provides a way to assess the dis-
criminative information solely in the nuclear morphometry measurements
by invoking a theoretical population where the different cancer grades and
adjacent cells are equally prevalent. From the computed linear dis-
criminants, the resulting posterior probabilities for a nucleus to be one of the
different cell types—adjacent or one of the different cancer grades—were
obtained for a range of values of the underlying nuclear morphometric
measurement. The resulting posterior probabilities were plotted on the
y-axis as a function of the nuclear morphometric measurement on the
x-axis, yielding curves that were color-coded by the cell type (Supplemen-
tary Fig. 3).

Data availability
The datasets used and analyzed during the current study are available from
the corresponding author on reasonable request.

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers on reasonable request from the corre-
sponding author. Segmentation of nuclear contour and nuclear morpho-
metric analysis were performed using custom MATLAB scripts (version
R2024a). The data preprocessing, augmentation, and fine-tuning pipeline
fornuclearwrinkling classificationwas implementedusinga customPython
script with PyTorch (version 2.4.1+cu121) and torchvision (version
0.19.1+cu121). Statistical analyses for comparingwrinkling categories, EFC
distribution, and posterior probability were performed using custom R
scripts (version 4.3.0).
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