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Introduction:Nuclei have characteristic shapes dependent on cell type, which are
critical for proper cell function, and nuclei lose their distinct shapes in multiple
diseases including cancer, laminopathies, and progeria. Nuclear shapes result
from deformations of the sub-nuclear components—nuclear lamina and
chromatin. How these structures respond to cytoskeletal forces to form the
nuclear shape remains unresolved. Although the mechanisms regulating
nuclear shape in human tissues are not fully understood, it is known that
different nuclear shapes arise from cumulative nuclear deformations post-
mitosis, ranging from the rounded morphologies that develop immediately
after mitosis to the various nuclear shapes that roughly correspond to cell
shape (e.g., elongated nuclei in elongated cells, flat nuclei in flat cells).

Methods:We formulated a mathematical model to predict nuclear shapes of cells
in various contexts under the geometric constraints of fixed cell volume, nuclear
volume and lamina surface area. Nuclear shapes were predicted and compared to
experiments for cells in various geometries, including isolated on a flat surface, on
patterned rectangles and lines, within a monolayer, isolated in a well, or when the
nucleus is impinging against a slender obstacle.

Results and Discussion: The close agreement between predicted and
experimental shapes demonstrates a simple geometric principle of nuclear
shaping: the excess surface area of the nuclear lamina (relative to that of a
sphere of the same volume) permits a wide range of highly deformed nuclear
shapes under the constraints of constant surface area and constant volume.When
the lamina is smooth (tensed), the nuclear shape can be predicted entirely from
these geometric constraints alone for a given cell shape. This principle explains
why flattened nuclear shapes in fully spread cells are insensitive to the magnitude
of the cytoskeletal forces. Also, the surface tension in the nuclear lamina and
nuclear pressure can be estimated from the predicted cell and nuclear shapes
when the cell cortical tension is known, and the predictions are consistent with
measured forces. These results show that excess surface area of the nuclear
lamina is the key determinant of nuclear shapes. When the lamina is smooth
(tensed), the nuclear shape can be determined purely by the geometric constraints
of constant (but excess) nuclear surface area, nuclear volume, and cell volume, for
a given cell adhesion footprint, independent of the magnitude of the cytoskeletal
forces involved.

OPEN ACCESS

EDITED BY

Srimonta Gayen,
Indian Institute of Science (IISc), India

REVIEWED BY

Chris Toseland,
The University of Sheffield,
United Kingdom
Thomas Cremer,
Ludwig Maximilian University of Munich,
Germany

*CORRESPONDENCE

Richard B. Dickinson,
dickinso@ufl.edu

RECEIVED 30 September 2022
ACCEPTED 30 May 2023
PUBLISHED 15 June 2023

CITATION

Dickinson RB and Lele TP (2023), Nuclear
shapes are geometrically determined by
the excess surface area of the
nuclear lamina.
Front. Cell Dev. Biol. 11:1058727.
doi: 10.3389/fcell.2023.1058727

COPYRIGHT

© 2023 Dickinson and Lele. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 15 June 2023
DOI 10.3389/fcell.2023.1058727

https://www.frontiersin.org/articles/10.3389/fcell.2023.1058727/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1058727/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1058727/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1058727&domain=pdf&date_stamp=2023-06-15
mailto:dickinso@ufl.edu
mailto:dickinso@ufl.edu
https://doi.org/10.3389/fcell.2023.1058727
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1058727


KEYWORDS

nuclear shape, nuclear morphology and function, mechanotranduction, cell shape, cell
cortex, nuclear lamina

1 Introduction

The shape of the mammalian cell nucleus is an important cellular
feature that varies in different cell types and tissues. For example, in
endothelial cells lining the blood vessels and capillaries, nuclei are
typically flat, whereas they are more rounded in epithelia and
elongated in fibroblasts. Although the mechanisms regulating nuclear
shape in human tissues are not fully understood, it is known that
different nuclear shapes arise from cumulative nuclear deformations
post-mitosis, ranging from the rounded morphologies that develop
immediately after mitosis to the various nuclear shapes that roughly
correspond to cell shape (e.g., elongated cells have elongated nuclei, flat
cells have flat nuclei). The cell nucleus is deformed by mechanical
stresses generated in the cytoskeleton (Lele et al., 2018), and the resulting
nuclear deformations are critical formediating essential cellular activities.
In particular, nuclear deformations enable fibroblast migration during
wound healing (Harada et al., 2014), cell migration during early
embryonic differentiation (Smith et al., 2017), neuronal migration
(Wu et al., 2018) and neurokinesis during development (Chen et al.,
2019), immune cell migration across the endothelium (Rowat et al.,
2013), and muscle contraction (Lorber et al., 2020).

In addition, nuclear deformations can trigger cell-type-specific
gene expression and signaling pathways through mechanisms that
are currently not well-understood, due to an inadequate
understanding of how sub-nuclear structures respond to nuclear
forces. However, it has been shown that stretching of the nuclear
envelope induces the opening of stretch-activated ion channels in
the nuclear membrane, which in turn, activates the small GTPase
RhoA and alters cell migration activity (Lomakin et al., 2020).
Similarly, mechanical flattening of the nucleus can stretch nuclear
pores, leading to translocation of yes-associated protein (YAP) into
the nucleus (Dupont et al., 2011; Elosegui-Artola et al., 2017), and
thereby alter gene expression (Kalukula et al., 2022).

Critically, nuclear deformations can also have pathological
consequences. For example, extreme deformations may tear and
rupture the nuclear envelope, leading to DNA damage, tumorigenesis
(Denais et al., 2016), and invasive migratory phenotypes (Nader et al.,
2021). Additionally, nuclear deformation due to a decrease in nuclear
lamin A levels allows cell migration through confining spaces in the
tissue interstitium, thereby contributing to tumor cell escape and
metastasis (Friedl et al., 2011; Wolf et al., 2013; Vortmeyer-Krause
et al., 2020). Cancer pathologists commonly use nuclear morphology to
grade different cancers, assessing both shape deformation and
enlargement in size (reviewed by us in (Singh and Lele, 2022)).

Generally, nuclear shape mimics the overall cell shape. For
example, nuclei are elongated in elongated cells, and they take on
a flattened disk-like shape in well-spread cells (Versaevel et al., 2012;
Li et al., 2015; Neelam et al., 2016). The predominant model for
explaining such shapes assumes that the nuclear lamina, chromatin,
and other sub-nuclear structures deform elastically in response to
cytoskeletal forces (reviewed previously in (Kalukula et al., 2022)). In
this model, the nucleus is assumed to be a stiff, elastic object that
deforms from an initial spherical shape by elastically straining the
chromatin and stretching the stiffest surface element, which is the

nuclear lamina. The models are motivated by measurements of
nuclear deformation with force probes, such as the Atomic Force
Microscope (AFM) and other techniques (e.g., micropipette
aspiration) that apply controlled forces on short timescales of only a
few seconds (Guilak et al., 2000; Dahl et al., 2005; Pajerowski et al., 2007;
Ivanovska et al., 2010; Shin et al., 2013; Swift et al., 2013; Harada et al.,
2014; Neelam et al., 2015; Stephens et al., 2017; Zhang et al., 2019;
Wintner et al., 2020; Zuela-Sopilniak et al., 2020). In these models, the
resting undeformed state of the nucleus is commonly assumed to be a
sphere with a thin, mechanically stiff, surrounding lamina layer.
However, since a sphere is the unique geometric shape with a
minimal surface area for its volume (or maximal volume for its
surface area), any deformation of a sphere requires either a change in
surface area, a change in volume, or both. Consequently, if the resting
nucleus is assumed spherical, the large deformations such as observed in
flattened or elongated nuclei, would require large enough forces on the
nucleus to either stretch the stiff nuclear lamina or to compress the
nuclear volume. Yet, three-dimensional reconstructions of the nuclear
shape in rounded cells show that the lamina is not a smooth spherical
shell; rather, it has a significantly greater surface area than that of a sphere
of the same nuclear volume, with the excess lamina area stored in surface
folds, wrinkles, and undulations (Li et al., 2015; Neelam et al., 2016;
Katiyar et al., 2019; Cosgrove et al., 2021; Dickinson et al., 2022)
(Figure 1A). When an object’s surface area exceeds that of a sphere
of the same volume, a wide range of three-dimensional shapes are
geometrically possible for that volume and (excess) surface area without
requiring a mechanical stretching of the surface. We have previously
invoked excess lamina surface area to explain why the nucleus is highly
compliant to shape changes during spreading of cells, and only is “stiff”
to further flattening once the surface area is smoothed and where further
deformations require volume compression or lamina area expansion (Li
et al., 2015). The features of the resulting x-z (side-view) of nuclei in
spread cells with smooth lamina are remarkably consistent, with a flat
basal surface at the substratum, highly curved sides in contact with the
cytoplasm, and a spherical cap-shaped apical surface in contact with the
cell cortex (Figures 1B–D). The correlation between cell spreading,
nuclear unwrinkling, and nuclear flattening, as well as the asymptotic
limit to nuclear flattening, does not depend on various perturbations of
the cytoskeleton including myosin inhibition (Li et al., 2015). Further,
removal of cytoskeletal stresses does not relax elongated nuclear shapes
back to circular (spherical) shapes (Tocco et al., 2018). Thus, contrary to
the dominant mechanical models for nuclear shaping in the literature,
asymptotic, limiting nuclear shapes in fully spread cells do not reflect a
balance between elastic stresses in the nuclear shape and cytoskeletal
forces, and any elastic energy that would cause the nucleus to recover its
initial shape dissipates on the time scale (minutes) of cellular and nuclear
shape changes.

Motivated by the above observations, we show in this paper that the
limiting nuclear shapes with smooth (tensed) lamina can be closely
predicted based solely on a simple geometric principle: the excess surface
area of the nucleus (relative to that of a sphere of the same volume)
permits a wide range highly deformed nuclear shapes under the
constraints of constant lamina surface area and constant cell and
nuclear volumes, but when the lamina becomes smooth (tensed), as
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in fully spread cells, these geometric constraints yield a unique nuclear
shape for a given cell adhesion footprint (Figure 1E). By accounting for
the excess lamina surface area, highly deformed nuclear shapes can be
predicted in various geometries without invoking further mechanical
principles such as elastic deformation in response to cytoskeletal forces.
Indeed, the observed nuclear shapes can be geometrically predicted
independent of the magnitude of the cytoskeletal forces involved.

2 Theoretical model

The unique shape with a minimum surface area under the
constraint of constant volume is a sphere. Its surface area Asphere

is geometrically related to its volume V by

Asphere � 36π( )1/3V2/3 (1)
Because its area is at minimum, any deformation of shape from

the sphere requires an increase in surface area, a decrease in volume,
or both. A well-known physical example of a sphere in nature is a

drop of water in oil which takes on a spherical shape to minimize its
surface energy, equal to the product of surface tension and surface
area. However, unlike a liquid drop, the nuclear lamina in the surface
of a rounded nucleus is not spherical; rather it exhibits surface folds,
wrinkles, and undulations, which only disappear in fully spread cells
(Figure 1). This implies that in the unstressed nucleus, the lamina
surface area, A, is greater than Asphere, with a fractional excess
surface area ε defined as

ε � A/Asphere − 1 (2)

Unlike the unique shape of a sphere with volume V and surface
area Asphere, an object with an excess surface area A>Asphere may
take on a wide range of possible shapes with the same volume and
surface area. Consequently, specifying only the constraints of fixed
volume and fixed (but excess) surface area is insufficient to
determine a unique shape. To illustrate this, we examine an
object’s shape with fixed volume and fixed surface area confined
in a cylindrical pore (Figure 2A). For a given pore radius, there is a
unique shape, a capsule, with cylindrical sides and hemispherical

FIGURE 1
Geometry of rounded and fully spread cells from x-z perspective. (A) NIH3T3 fibroblasts fixed within 5 min of surface attachment with two
fluorescence channels: (i) labeledwith Dil D7556 lipid dye or (ii) GPF lamin-A [image fromDickinson et al. APL Bioeng 2021 (Dickinson et al., 2022)]. Excess
area is seen clearly in the form of surface folds, wrinkles, and undulations. (B) (i-ii) Same conditions as (A) but at 24 h of spreading, showing different apical
and side curvatures of smooth nuclear lamina, and the different apical cell surface curvatures on the nuclear cap versus elsewhere. (iii) The nuclear
lamina overlayed with the predicted nuclear shape (white dotted line) for 45% excess lamina area, showing close agreement between the model and
experiment, including the characteristic spherical cap of the joint nuclear-cortical surface, the nodoid nuclear sides in contact with the cytoplasm, and
the flat nuclear bottom at the substratum. (D) An x-z perspective of a myoblast cell and lamina from Jana et al. Adv Sci 2022 (Jana et al., 2022) with (i)
labeled cytoskeleton [actin (red), tubulin (purple), and vimentin (green)], (ii) labeled lamin A/C, and (iii) the lamina image overlayed with a computed shape
(white dotted line) for 35% excess area. (C) Another x-z perspective of a NIH3T3 fibroblast where f-actin is labeled with phalloidin (green) and the
chromatin is labeledwith Hoechst (H33342), showing the cortical actin in green [fromKatiyar et al. J. Microscopy 2021 (Katiyar et al., 2021)]. The nucleus is
overlayed with the computational model predictions (white dotted line) for 40% excess area. (E) Cartoon illustrating the key principle in this paper. When
cells are rounded or partially spread, the excess lamina surface area (manifested in folds andwrinkles) allows for a wide range of nuclear shapes within the
confines of the cell boundary for fixed values of the cell volume, nuclear volume, and lamina surface area. However, when the nuclear lamina is smooth
(tensed), these constraints yield a unique, geometrically determined Nuclear shape for a given cell adhesion footprint. All scale bars are 10 microns.
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endcaps that has a minimum surface area (at Amin) for a given
volume, V. Therefore, a shape with fixed volumeV and fixed surface
area A, can only fit within the pore if A≥Amin; otherwise, if
A<Amin, the pore is too small to accommodate the fixed surface
area. When the pore diameter is at the threshold size where
A � Amin, then the object must take on the unique limiting shape
of a capsule. Figure 2A shows capsules with a fixed volume and
varied values of the fractional excess area ε at the threshold pore
diameter. When A>Amin, the shape within the pore is not
completely determined by the volume and area constraints, since
it could take on any number of shapes. For example, it could be even
narrower, have non-spherical endcaps, or additional surface area
that could be shaped into various surface folds, wrinkles
undulations, etc. Since migrating cells in the body may find
themselves in such cylindrical confinements in different contexts
(Wolf et al., 2013; Denais et al., 2016; Thiam et al., 2016), the
biological implication is that a cell nucleus with incompressible
volume and excess surface area has no geometric constraints to
moving through a pore above the threshold diameter, but it would
have to either stretch its lamina area or compress its volume to move
through a smaller pore.

Another relevant example is an object with constant surface area
and constant volume vertically compressed between two flat surfaces
(Figure 2B). Similar to Figure 2A, there is a threshold gap distance
for an object confined between the two plates above which infinite
shapes are possible for a fixed volume and excess area, but no shapes
that satisfy these constraints are possible at smaller gap distances. At
the threshold gap distance, the unique shape that satisfies the

geometric volume and area constraints is a disk-like shape with
nodoid sides. Similar to the hemispherical surfaces of a capsule,
nodoids are convex axisymmetric surfaces with constant mean
curvature (Plateau, 1873), and they have a minimum surface area
for the enclosed volume. (If the object only resists changes to volume
and surface area, maintaining a flattened shape would require no
force at gap distances above the threshold gap distance. This
geometric threshold would explain why nuclei in spreading cells
asymptotically reach the same minimum height even when myosin
activity is inhibited (Li et al., 2015), i.e., flattening the nucleus down
to the minimum height can proceed without changing nuclear
volume or lamina area while requiring minimal force, but
flattening the nucleus below the minimum would stretch the
(now taut) stiff lamina or compress the nuclear volume, which
requires much higher force and is not observed during spreading. In
these examples, the excess surface area permits a wide range of
possible shapes without necessitating any compression of the
volume or expansion of the surface area, but only down to a
certain threshold length (i.e., pore size or gap distance) of
confinement. For example, the cell nucleus can store its excess
area in various surface folds, wrinkles, and undulations, which
become smoothed out only when a flattened height is reached
during cell spreading. This transition is clearly observed when
the wrinkled lamina in rounded cells becomes smoothed out
when the nucleus flattens in fully spread cells (Figure 1;
(Dickinson et al., 2022)).

In both examples in Figure 2, the surfaces that are not in contact
with the walls are surfaces of constant mean curvature

FIGURE 2
Limiting shapes in confined geometries of constant volume and constant surface area, with increasing fractional excess surface area relative to that a
sphere of the same volume. Limiting shapes are shown for objects confined to (A) a cylindrical pore; and (B) between two flat plates. The excess surface
area allows the object to occupy a smaller length dimension of confinement (pore diameter or gap distance between the plates), and the shapes shown
represent the unique shape at the threshold length, belowwhich there are no shapes possible that satisfy the fixed volume and area constraints, and
above which infinite shapes are possible (e.g., with surface folds, wrinkles, or undulations).

Frontiers in Cell and Developmental Biology frontiersin.org04

Dickinson and Lele 10.3389/fcell.2023.1058727

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1058727


(hemispherical caps in Figure 2A or nodoid sides in Figure 2B).
When a curved two-dimensional surface is under tension (τ), which
resists expansion of its surface area, then the balance of stress
requires a corresponding pressure difference ΔP across the
interface. The stress balance (neglecting bending forces) is
expressed by way of the Laplace equation,

ΔP � 2τH (3)
where Though H is measurable from observed shapes, Eq. 3
indicates that τ and ΔP cannot be obtained independently from
measuring the surface curvatures alone (i.e., only the ratio of τ and
ΔP could be obtained), reflecting the fact that the limiting shapes
with surfaces of constant mean curvature result from geometric
constraints rather than from a balance of forces. That is, the same
limiting shape is generated regardless of overall magnitude of the
forces involved. This principle is consistent with the observation that
the limiting heights of flattened nuclei in spread cells do not depend
on the presence of specific cytoskeletal structures or myosin activity
(Li et al., 2015), provided the cell is able spread enough to vertically
confine the nucleus to its limiting shape. Hence, the geometric

constraints permit the same highly deformed nuclear shapes
regardless of the magnitude of the force, and when the lamina is
smooth, the pressure and surface tension are related to each other by
the surface curvature.

3 Application of model to interpret
observed nuclear shapes

3.1 Nuclear shapes in a cell spreading on a
flat substratum

We now extend the above conclusions to nuclear shapes in
spread cells confined to various geometries to show that deformed,
limiting shapes can be predicted for a given (excess) surface area,
nuclear volume, and cell volume. This calculation seeks to capture
the limiting cell and nuclear shapes in spread cells, and it neglects
additional stresses that may arise from movement of the cell
boundary or other cellular shape changes such as cell crawling
(Li et al., 2015; Tocco et al., 2018; Katiyar et al., 2019). That is, we

FIGURE 3
Calculated axisymmetric cell and nuclear x-z profiles in spread cells are shown for increasing amounts of fractional excess areas indicated by the
percentages. (A) Characteristic calculated shape (x-z profile) showing the cell and nucleus surfaces. Consistent with experimental x-z profiles (Figure 1),
spread cells with smooth nuclear lamina have surfaces of constant mean curvature, including the cortical cell surface (mean curvature,Hcell), the nuclear
surface (containing the lamina) in contact with the cytoplasm (Hnuc), and the joint cortex/nuclear apical surface capping the cell (Hcap.) The cell and
nuclear shapes were found by solving for the mean curvatures of each surface that satisfy the constant volume and surface area constraints (see
Methods). (B)Calculated cell and nuclear shapeswith varying lamina excess surface area. For the profiles shown, the spreading cell radius was taken as the
radius where the slope of the cell edge just becomes parallel to the substratum. As shown, increasing excess lamina area permits flatter nuclei and greater
spreading radius for the same nuclear and cell volume (V and Vcell, respectively). For the calculations shown here V= 900 μm3, Vcell = 3.4V, consistent with
values for NIH 3T3 fibroblasts (Li et al., 2015). Comparison to experimental profiles like in Figure 1 suggests nuclei typically have 30%–60% excess surface
area, which allows a flat equilibrium nuclear shape that is geometrically determined and independent of the magnitude of cellular forces.
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draw a distinction between the viscous or viscoelastic forces that
drive the nucleus toward the limiting shape and any forces present in
the limiting shape, focusing on the latter. First, we consider the case
of an axisymmetric cell spread on a flat surface, where the nuclear
and cell shape can be solved analytically (see derivation in Methods,
Section 5). Cell and nuclear shapes were calculated by solving for the
surfaces of constant mean curvature that satisfy the constraints of
fixed lamina area, cell volume, and nuclear volume. As depicted in
Figure 3A, the relevant interfaces are the cell cortex interface with
the surrounding medium (an unduloid surface of curvature Hcell),
the nucleus-cytoplasm interface (a nodoid surface of curvature
Hnuc), and the joint nucleus-cortex interface with the
surrounding medium (a spherical cap of curvature Hcap). These
three distinct regions of different curvatures are commonly seen in
x-z cross-sections of fully spread cells (see, for example, Figures
1B–D). Similar to the shape calculation in Figure 2B, increasing
values of excess area generates limiting nuclear shapes that are
increasingly flattened against the substratum (Figure 3B). Moreover,
the calculated shapes closely resemble experimentally observed x-z
profiles of cell and nuclear shapes in fully spread cells (Figure 1Biii,
Figure 1Ciii, and Figure 1D). This close agreement based only on
geometric considerations supports our assertion that the flattened
limiting shapes of nuclei observed in spread cells are geometrically
determined by the % excess area of the lamina, independent of the
magnitude of the cytoskeletal forces involved.

When the lamina is smoothed and tensed, the surface curvatures are
related to the tensions and pressure differences of the various interfaces
by the Laplace equation. These pressure differences are sustained by the
compartmentalization from the plasmamembrane and nuclear envelope
and the osmotic resistance of the nucleus and cytoplasm to volume
changes. Following Eq. 3, the stress balances across the cortex-cytoplasm,
cortex-nucleus and nucleus-cytoplasm interfaces are:

Pcyt � 2τcellHcell Pnuc � 2 τcell + τnuc( )Hcap Pnuc − Pcyt � 2τnucHnuc

(4)

where the pressures are defined relative to the surrounding pressure.
Rearranging Equation 4 yields

τnuc
τcell

� Hcap −Hcell( )
Hnuc −Hcap( ) Pnuc

τcell
� 2Hcap

Hnuc −Hcell( )
Hnuc −Hcap( ) Pcyt

τcell
� 2Hcell

(5)

Hence, Pnuc, Pcyt, and τnuc can be obtained from surface
curvatures when τcell is known. (Generally, pressures Pnuc and
Pcyt account for all static stresses acting orthogonal to the
nuclear and cortical surfaces, either from the solution phase or
from the cytoskeletal network phase). Eq. 5 implies again that the
shapes alone, which are geometrically constrained limits, do not the
yield the overall force magnitude, only the relative tensions and
pressures. But, when the cortical tension τcell is known, the nuclear
and cytoplasmic pressures and the lamina tension can be calculated.
Figure 4 shows calculations for the curvatures, pressures, and lamina
tension for increasing values of excess lamina surface area at the
same cell spreading radius and a specified value of τcell = 0.5 nN/μm
(Janshoff, 2021). As shown in the table, increasing the excess lamina
area is predicted to correspond to a decrease in nuclear pressure and
lamina tension for the same spreading radius. For a larger values of
excess area, the solution to the cell and nuclear shapes has a negative

lamina tension, which is assumed non-physical. In this regime, rather
than conforming to the apical surface, the nucleus would instead be
expected to separate from the cortex and take on any of the range of
possible shapes that would satisfy the constant volume and surface area
constraints within the gap between the spherical cap-shaped cortical
surface and the substratum. Generally, the geometric constraints of
constant area, nuclear volume, and cell volume only allow unique
solutions with a positive lamina tension (τnuc > 0, Pnuc >Pcyt) above
a certain cell spreading radius, where the nuclear pressure and lamina
tension can be calculated. Below this radius, though, infinite solutions
with τnuc � 0 and Pnuc � Pcyt are possible (e.g., various shapes with
lamina folds and wrinkles). This range is illustrated further in Figure 5,
where the cell shapes, surface curvatures, and pressures are calculated for
the case of 40% excess lamina area, over the range of cell spreading radii
that permit solutions with non-negative lamina tension (τnuc ≥ 0). At the
smallest radius, where τnuc � 0, the nucleus conforms to the spherical-
cap-shaped cell and the nuclear and cytoplasmic pressures are equal. At
maximum spreading, taken to be where the cell edge becomes parallel to
the substratum, the lamina tension is largest.

3.2 Nuclear shapes in cells in an epithelial
monolayer or isolated in a well

The shapes of epithelial cells in a monolayer in vivo can vary
from columnar to cuboidal to squamous. We have previously
reported that MCF10A breast epithelial cells in culture
monolayers exhibit a flattened morphology with disk-shaped
nuclei and remarkably uniform nuclear heights (Figure 6A;
(Neelam et al., 2016)). While pulling or compressive stress
transmitted to the nucleus from the moving cell boundaries is
likely involved in shaping the nucleus during changes in cell
shape due to viscous forces (Li et al., 2015; Dickinson et al.,
2022), maintaining the resulting disk-like nuclear shape does not
necessarily require cellular forces and can arise entirely from the
constraints on excess area and cell volume, as indicated in Figure 2B.
This nuclear shape along with the cell shape can also be predicted for
a given cell spreading area, as shown in Figure 6A, using the
approach in section 3.1, but now with the vertical position of the
cell edge also specified. Interestingly, there is a unique cell radius that
yields a flat apical surface of the nucleus; any larger radius would
instead have concave regions of lower cell height between the
adjacent nuclei in the monolayer, which was not observed
experimentally. Nuclei were similarly flat and disk-like when
isolated cells were cultured within a 5-μm deep well (Neelam
et al., 2016), though in this case the cell cortex was not flat;
rather, it exhibited a concave shape with a meniscus due to cell
spreading up the side walls (Figure 6B, (Neelam et al., 2016)). These
shapes of the cell and nucleus can also be predicted from the model
by constraining both the radial and vertical edge position in an
axisymmetric well of the same area as used in the experiments. Here,
the vertical position of the cell boundary was varied until the
observed disk-like nuclear shape was achieved. Importantly, a
concave, upwardly curved tensed cortex would not be able to
exert a downward compressive force, supporting the model
prediction that the disk-like nuclear shape can arise without any
downward compressive force on the nucleus. This conclusion holds
for either the cell in the monolayer or the cell in the well because the
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FIGURE 4
Calculated axisymmetric nuclear shapes showing the predicted effect of excess lamina area on the values of lamina surface tension, nuclear
pressure, and cytoplasmic pressure, for a given cell spread radius. (A) The three curved interfaces are (1) the cell cortex (mean curvature Hcell and surface
tension τcell), (2) nuclear interface with the cytoplasm (mean curvature Hnuc and tension τnuc), and (3) the apical cap where the lamina and cortex are in
contact, interfacing the nucleus and the surrounding media (curvature Hcap and net surface tension equal to τnuc + τcell) (B) Cell and nuclear shapes
are shown for the same spread radius and increasing amounts of excess surface area shown in the adjacent table column. The table shows the calculated
curvatures, pressures, and lamina tension based on the excess area and the nuclear and cell volume constraints (in this case, V = 900 μm3, Vcell = 3.4V,
consistent with values for NIH 3T3 fibroblasts (Li et al., 2015). The force scale is set by assuming τcell = 0.5 nN/μm.Note that for 80% excess area at this cell
spreading radius, the calculation yields a negative lamina tension, which is a non-physical solution implying the spread radius is too small to fully confine
the nucleus to a unique shape under the cortex. In this case, with a large excess nuclear surface area, given cell volume and spread radius, the nuclear and
cortical surfaces would instead be expected to be separated and the nucleus would take on any the infinite possible nuclear shapes (with variable
curvature and τnuc = 0) confined under a spherical cap-shape cell cortex.

FIGURE 5
Calculated axisymmetric nuclear shapes, curvatures, and pressures, for cells with varying spread radius, 40% excess lamina area, and the same
parameters used in Figure 4 (V = 900 μm3, Vcell = 3.4V, τcell = 0.5 nN/μm). The spread radius ranges from theminimum (21.6 microns) where the lamina is
under positive tension to the maximum radius (37.5 microns) where the cell edge becomes parallel to the substratum.
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apical nuclear surface appears flat (Hcap � 0) in both cases. FromEq. 5, a
flat apical cap implies that nuclear pressure is zero relative to the cell
surroundings, but the lamina tension is predicted to be positive, and the
cytoplasmic pressure is negative, for the cell in the well, due to the
negative value of Hcell. In contrast, the lamina tension and the
cytoplasmic pressure for the monolayer cell are predicted be zero
since both Hcell and Hcap are near zero. Since there is nothing
evident in these experiments that would prevent cells from spreading
further (making Hcap > 0, like in typical isolated cells spread on flat
substrata), it remains to be explained why the cell spreading is limited in
the monolayer or in a well to just reach the point where nuclear pressure
is zero.

3.3 Nuclear shapes in cells spread on
patterned rectangles and lines

Similar to the flat nuclei in flat (spread) cells, elongated nuclear
shapes are observed in elongated cells, Versaeval et al. (Versaevel et al.,
2012) found that nuclear shapes were increasing elongated in cells
cultured on rectangles with increasing aspect ratios. To test whether
such non-axisymmetric 3D nuclear shapes can be predicted from the cell
geometry and the excess nuclear surface area alone, we computed the 3D
shapes numerically by minimizing the area of a 3D triangular surface
meshes representing the cell cortex and nuclear surface for a given
cellular adhesion footprint, under the constraints of constant cell volume,
nuclear volume, and nuclear surface area (see Methods). As shown in

Figure 7, the computed nuclear shapes closely mirror those reported in
(Versaevel et al., 2012), assuming an excess area of ~50%. However, the
nuclear volumes required to calculate nuclear sizes consistent with the
images and reported aspect ratios were roughly two times larger than the
volumes reported in (Versaevel et al., 2012), which were calculated
assuming ellipsoid nuclear shapes. This difference is likely due to the fact
that the ellipsoid approximation significantly underestimates the volume
in the z-direction for a nucleus that is lies nearly flat on the apical and
basal surfaces. Like the nuclear shapes in (Versaevel et al., 2012), the
nuclei are predicted to be much flatter vertically than horizontally, with
oval x-y profiles with aspect ratios that mirror the cellular aspect ratios.
Importantly, these shapes are again explained purely from the geometric
constraints irrespective of the magnitude of the cellular forces, and do
not require invoking an elastic force balance like that proposed in
(Versaevel et al., 2012).

3.4 Nuclear shapes with deep indentations

Lastly, we test the ability of the geometric model to explain the
overall nuclear shapes when the nucleus develops deep nuclear
invaginations, as we have recently reported in nuclei impinging
against microposts (Katiyar et al., 2022). In these experiments, nuclei
in migrating cells contact the microposts, creating invaginations into the
nuclear lamina (Figure 8), similar to the deformation of a liquid drop
with surface tension. Here we calculated remarkably similar nuclear
shapes by translating a 1-micron diameter micropost toward the nuclear

FIGURE 6
Calculated cell and nuclear shapes for cells in (A) epithelial monolayer; and (B) isolated within well, compared to the experimental x-zMCF10A cell
and nuclear profiles reported in Neelam et al. Sci Rep 2016 (Neelam et al., 2016). Experimental x-zMCF10A cell profiles were stained for F-actin with Alexa
Fluor 488 phalloidin and the nucleus with Hoechst 33342. Calculated cell boundaries are indicated by red lines, with lateral and basal boundaries are
imposed by the solid boundaries, and apical surfaces being calculated surfaces of constant mean curvature). The flat disk-shaped nuclei like those
observed in epithelial cells are solutions to the axisymmetric model for the cell and nuclear volumes reported in (V = 700 μm3, Vcell = 6.4V), and assuming
an excess area ε ~ 65%. The flat apical surface implies that the nuclear pressure relative to the surroundings is nearly zero (see Eq. 5). In themonolayer, the
apical cortical surface is also flat, predicting in nearly zero cytoplasmic pressure. But for the cell in the well, the cortex is negatively curved resulting in a
negative cytoplasmic pressure and a positive lamina tension. Scale bars are 10 microns.
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center while recursively calculating the deformed equilibrium
nuclear shape. We did not otherwise model the interaction
between the micropost and cell, consistent with the
experimental observation that the micropost was fully
engulfed in the cytoplasm (Katiyar et al., 2022). The calculated
nuclear shapes for ε = 40–60% closely resemble the
experimentally observed nuclear shapes (Figure 8). Moreover,
assuming a cortical tension of ~0.5 nN/um (Janshoff, 2021), the
force on the post was found to be ~ 0.3–1 nN for ε = 40–60%, by
accounting for the lamina tension from Eq. 5 and the length of
interaction with micropost. This is close experimental values of
1–2 nN reported in (Katiyar et al., 2022). These computational
findings are consistent with the interpretation of the shapes in
(Katiyar et al., 2022), that the invaginations reflect the lamina
tension surrounding a pressurized yet compliant nuclear interior,
rather than an elastic deformation of the nucleus. The excess
surface area permits such extreme shape changes again without
stretching the lamina or compressing the nuclear volume.

4 Discussion

An oval or circular nucleus with a smooth, curved contour is a
ubiquitous, striking feature of a cultured eukaryotic cell. Yet, an
explanation for its smooth appearance has remained elusive. In
contrast to our geometric explanation, deformed non-spherical
nuclear shapes have been widely assumed to result from a
balance of cytoskeletal forces on the elastically deformed nucleus
(reviewed in (Dickinson et al., 2022) and (Lele et al., 2018)), with the
resting state of the nucleus assumed to be an undeformed sphere.
Our results contradict this notion, showing that geometric
considerations alone can parsimoniously explain a wide range of
nuclear shapes observed in different experimental contexts,
independent of the magnitude of cytoskeletal forces. The nuclear
shape calculations require no parameters other than the (excess)
nuclear surface area and the cell and nuclear volumes. Before the
limiting shapes are reached, excess lamina surface area is predicted
to allow the nucleus to undergo dynamic shape deformations at

FIGURE 7
Calculated 3D cell and nuclear shapes compared to data of primary human umbilical vein endothelial cells spread on patterned 1600-μm2

rectangles of varying aspect ratio, as reported by Versaeval et al. Nat Comm 2012 (Versaevel et al., 2012). Calculated x-z nuclear profiles and nuclear
heights closely agreewith the experimental nuclear shapes, with similarly increasing nuclear lengthswith aspect ratios of (A) 2:1, (B) 4:1, and (C) 10:1. Scale
bars are 10 microns.
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constant surface area and constant volume. These deformations can
occur because they do not require areal expansion of the lamina or
compression of the nuclear volume. This principle explains why the
shape changes of the nucleus conform to cellular shape changes
during cell spreading (Li et al., 2015) and cell crawling (Tocco et al.,
2018; Dickinson et al., 2022), before reaching the limiting shapes
modeled here. In these dynamic situations, cytoskeletal forces and
cytoskeletal linkages to the nucleus involved in transmitting viscous
or viscoelastic stresses to the nucleus are expected to be important in
driving the nucleus to the limiting shapes. That is, the pathway and
time required to reach the limiting shapes likely depends on the
nature, magnitude, and transmission of the cytoskeletal forces, while
the ultimate limiting shape is geometrically determined for a given
cell shape. For example, disruption of the LINC complex, which
connects the cytoskeleton to the nucleus, slows nuclear flattening
during cell spreading but does not affect the ultimate limiting shape
(Li et al., 2015).

It is surprising that the model can so effectively capture nuclear
shapes in various cell geometries with so few parameters despite
several simplifying assumptions. The assumption of surfaces of
constant mean curvature implicitly assumes that the nuclear
pressure Pnuc and cytoplasmic pressure Pcyt are spatially unform
and isotropic (the latter term accounting for both the hydrostatic

pressure in the cytosol and contractile tension in cytoskeletal
network phase (Li et al., 2015)). Constant mean curvature also
implies that the 2D tensions of the cell cortex (τcell) and the nuclear
lamina (τnuc) are spatially uniform and isotropic. It is likely that
anisotropic tension may impact the directionality of cell surface
curvature, especially in highly elongated cells where stress fibers in
the cell cortex tend to align with the cell’s long axis, but such
anisotropy still does not appear to be a primary driver for nuclear
shape. The model also ignores the effect of cytoskeletal structures
(e.g., organelles and stress fibers) pressing against the nucleus.
However, these do not appear to greatly change the smooth
nuclear shape when the lamina is tensed, and their impact on the
nuclear shape is likely to be more pronounced in less spread cells
where the lamina is not tensed.

The key model assumption that the lamina has excess surface
area is clearly evident in the folds, wrinkles, and surface undulations
seen in 3D images of rounded nuclei, falsifying the notion that the
resting state of the lamina is spherical (Figure 1). As the bi-layered
nuclear envelope is attached to the lamina via the LINC complex
(Alam et al., 2014), it must likewise have excess area that allows large
deformations without coinciding with the lamina deformation, as
observed for nuclei deformed by microposts (Katiyar et al., 2022).
Moreover, our previous work has shown that removal of cytoskeletal

FIGURE 8
Predicted 3D shape from geometric model for nucleus deformed by a 1-um diameter micropost compared to 3D imaging in Katiyar et al. Adv Sci
2022 (Katiyar et al., 2022). (A) Calculated shapes from three different viewing angles (top, elevated, and side with cell shape also shown) are for nuclear
volume, V= 900 μm3, cell volume, Vcell = 3.4V, and three different fractional excess areas. 40%, 50%, and 60%, (B) Experimental shapes for nuclei indented
by (i) collagen fiber and (ii) one micron micropost (in red). Green is GFP-lamin (scale bar is 5 microns).
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forces does not cause relaxation of the nucleus to a spherical
morphology, implying nuclear deformations in spread cells are
irreversible (Tocco et al., 2018). Consistent with these findings,
elastic forces in the nuclear interior have been found to rapidly
dissipate on the time scale of seconds and that the nuclear contents
behave as a viscous fluid on this time scale (Erdel et al., 2015; Keizer
et al., 2022). From literature estimates of the area dilation modulus
(~390 nN/μm (Dahl et al., 2004)), the nuclear bulk modulus (~5 nN/
μm2 (Caille et al., 2002)), and the cortical tension (~0.5 nN/μm
(Janshoff, 2021)), the areal extension of the lamina and changes in
volume due to compression in the flattened nucleus during
spreading are expected to be less than 1%, based on pressures
and tensions calculated from Eq. 5. Even if some nuclear
compression or areal expansion were to occur when the lamina
becomes smoothed and tensed, this would not weigh against the key
conclusions that shape is primarily limited by the geometric
constraints of lamina area and nuclear volume, and that the
excess area permits a wide range of shapes at constant volume
and lamina area before the limiting shape is reached. The modeling
approach can easily accommodate nuclear compressibility and
lamina-areal expansion by incorporating a bulk modulus and
area modulus, as we have done previously in Li et al. (Li et al., 2015).

Because the calculated nuclear shapes are unique, limiting
geometric shapes constrained by constant lamina surface area
and constant nuclear volume, any resistance to bending of the
nuclear lamina and/or the nuclear envelope is not relevant for
predicting the shapes. If bending stiffness of the lamina is large
enough, it could, in principle, affect the calculated pressures and
tensions. The surface bending energy per unit area can be calculated
as Ebend � 2kcH2 (Helfrich, 1973), where kc is the bending modulus
andH is the mean curvature. For kc ~ 0.4 nN-μm (Vaziri et al., 2006;
Vaziri and Mofrad, 2007; Agrawal and Lele, 2020), Ebend < 10–4 nN-
μm using H ~0.4 μm-1 for the most-curved nuclear surface regions.
By comparison, the estimated tension in the lamina is τnuc ~ 5 ×
10−2 nN/μm (Figures 4, 5). Thus, the bending energy of the lamina,
even in the regions of highest curvature, should be negligible, being
2-3 orders of magnitude smaller than the calculated values of lamina
tension. Furthermore, the nuclear lamina commonly exhibits folds
and wrinkles on time scales of tens of minutes or longer during cell
spreading before a limiting shape with a smoothed lamina is reached
(Neelam et al., 2016). Thus, it is unlikely that resistance to bending of
the lamina or the other envelope components plays a significant role
in driving nuclear shape changes, at least on the longer time and
length scales considered here.

Our results predict that nuclear pressure and lamina tension
should arise in cell geometries that fully unfold the lamina excess
area (which is the case for most mammalian cells in culture). This
emphasizes the key mechanical role that the nuclear lamina plays in
imparting tension to the nuclear surface. The lamina can protect the
nucleus from extreme deformations, while otherwise permitting
mechanical compliance due to its excess area. For example,
nuclear pressure and the resulting lamina tension explain the
source and magnitude of forces exerted on microposts which
indent nuclei (Katiyar et al., 2022) in migrating cells (c.f.
Figure 8). They also explain how nuclei pass by the obstacles
unimpeded. In contrast, cells without lamin A/C appeared to lack
surface tension, resulting in the entanglement of highly deformed
nuclei on the obstacles. Similarly, nuclei in lamin A/C-null cells

flatten more than in wildtype spread cells (Li et al., 2015), again
implying that the constant-surface area constraint on nuclear shapes
requires lamin A/C.

The prediction of tension in the lamina upon unfolding is also
consistent with the observation that mechanosensitive yes-
associated protein (YAP) import to the nucleus correlates with
nuclear unwrinkling in cells in 2D culture (Cosgrove et al., 2021),
and that nuclei rupture during stretching of the lamina during cell
migration through confining spaces (Hatch and Hetzer, 2016). As
YAP translocation regulates gene expression, while deformation and
rupture can promote DNA damage and tumorigenesis, the
mechanical state of the nuclear lamina predicted by the model is
likely to be important in both healthy and diseased cells. Abnormal
nuclear morphologies in cultured diseased cells (such as tumor cells
or progeric cells) may also be in part due to changes in nuclear
pressure and tension in the lamina, which is a possibility worth
exploring in the future.

In summary, the simple geometric principle invoking excess
surface area explains how large nuclear deformations seen in various
cell geometries do not require that the nucleus be subjected to a large
force. Rather, limiting deformed nuclear shapes are geometrically
determined and not mechanically determined. We anticipate that
future application of this principle will yield further fundamental
insights into the relationships between force, nuclear deformation,
and cell function in healthy and diseased tissues.

5 Methods

5.1 Geometric prediction of cell and nuclear
shapes in axisymmetric spread cells

Here we derive the equations describing the general shape,
surface area, and volume of an axisymmetric surface of constant
mean curvature. Next, the equations are used for the various cell
surfaces to predict the axisymmetric cell shape and nuclear shape.
Let z be the vertical height of an axisymmetric surface and R be
the radial distance from the axis of symmetry. Let θ be the angle
between the vertical z-direction and the tangent to the interface,
such that

dz

ds
� cos θ s( ) dR

ds
� sin θ s( ) (6)

where s is distance along the arc-length. Accounting for the
curvatures along the arc-length and the orthogonal azimuthal
direction, the mean curvature of the axisymmetric surface is

H � −1
2

dθ

ds
− cos θ s( )

R s( )( ) (7)

Upon changing variables to R and z, Eq 7 can be written,

H � −1
2

d2R
dz2

1 + dR
dz( )2( ) 3

2

− 1

R 1 + dR
dz( )2( ) 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 1

2R dR
dz

d

dz

R

1 + dR
dz( )2( ) 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8)
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Rearranging and integrating with respect to z yields

R

1 + dR
dz( )2( ) 1

2

� HR2 + C (9)

where C is a constant, thus

dz

dR
� ±

1�����������
R/H

R2+C/H( )2

− 1

√ (10)

To integrate Eq. 10, it can be rewritten by replacing parameters
C and H with new parameters α and β, such that

dz

dR
� ±

R2 + αβ( )����������������
R2 − β2( ) α2 − R2( )

√ (11)

where

α � 1 + �������
1 − 4CH

√
2H

β � 1 − �������
1 − 4CH

√
2H

(12)

Note that the original parameters C and H can be recovered from

H � 1
α + β

C � αβ

α + β
(13)

Now, a new variable ϕ is introduced to replace R such that

R �
����������������
α2cos 2 ϕ + β2sin 2 ϕ

√
� α| | 1 − k2sin 2 ϕ( )1/2 (14)

where

k2 � α2 − β2

α2
(15)

such that

dz

dR
� − R2 + αβ

α2 − β2( ) cos ϕ sin ϕ (16)

(both sign possibilities in Eq. 11 are now accounted for by allowing
positive and negative values of ϕ). Because

dR

dϕ
� − α2 − β2( )

R
cos ϕ sin ϕ (17)

this change in variable simplifies Eq. 6 to be:

dz

dϕ
� dz

dR

dR

dϕ
� R + αβ

R
( ) (18)

Note that ds2 � (β + α)2dϕ2 � H−2dϕ2, providing a physical
interpretation of ϕ as the arc length scaled by the mean
curvature. Integrating Eq. 8 from initial value ϕ0 provides

z ϕ( )−z ϕ0( )�∫ϕ

ϕ0

α| | 1−k2 sin2ϕ′( ) 1
2 + αβ

α| | 1−k2 sin2ϕ′( ) 1
2

( )dϕ′

� α E ϕ,k( )−E ϕ0,k( )( )+β F ϕ,k( )−F ϕ0,k( )( )
(19)

where and F(ϕ, k) and E(ϕ, k) are incomplete elliptical integrals of
the first and second kinds, respectively, and

ϕ0 � ± sin−1
�������
α2 − R0

2

α2 − β2

√
(20)

The negative sign in Eq. 20 is used when dR
dϕ > 0 at R0 ≡ R(ϕ0),

noting Eq. 17 The surface area is obtained by integrating the arc
length rotated around the z-axis:

A ϕ0,ϕ( ) � 2π∫s1

s0

R s( )ds � 2π α + β( )∫ϕ1

ϕ0

R ϕ′( )dϕ′
� 2π β + α( )α E ϕ, k( ) − E ϕ0, k( ){ } (21)

Finally, the enclosed volume between z0 and z is similarly
obtained:

V � π∫z1

z0

R2dz � π∫ϕ

ϕ0

R3 + αβR( )dϕ′
V ϕ0,ϕ( ) � π

3
2 α| | β2 + α2( ) + 3 α| |αβ( ) E ϕ, k( ) − E ϕ0, k( )( )

− π

3
β2 α| | F ϕ, k( ) − F ϕ0, k( )( )

+ π

6
α2 − β2( ) R ϕ( )sin 2ϕ − R ϕ0( )sin 2ϕ0( )

(22)
The above results will now be applied to cortical, nuclear, and joint

surfaces, while accounting for the boundary conditions, constraints, and
the junction between them at point (R1, z1) (see Figure 9). First, the
cortex surface (R(ϕ), z(ϕ)) and mean curvature Hcell is calculated
between (R1, z1) and the cell edge at (R0, z0). In this case,

R ϕ( ) � z0| | 1 − k2 sin 2 ϕ( )1/2 ϕ0 < ϕ< ϕ1

z1 − z0 � α E ϕ1, k( ) − E ϕ0, k( )( ) + β F ϕ1, k( ) − F ϕ0, k( )( ){ } (23)
where

ϕ0 � sin−1
�������
α2 − R0

2

α2 − β2

√
ϕ1 � sin−1

�������
α2 − R1

2

α2 − β2

√
(24)

α � 1 + ���������
1 − 4CHcell

√
2Hcell

β � 1 − ���������
1 − 4CHcell

√
2Hcell

k2 � α2 − β2

α2

with parameter C to be determined from the boundary conditions
below. Similarly, the nuclear surface profile (Rn(ϕn), zn(ϕn))
between the contact point on the substratum, Rn0 and R1 is

Rn ϕn( ) � αn| | 1 − kn
2sin 2ϕn( )1/2 ϕn0 <ϕn < ϕn1

zn ϕn( ) � αn E ϕn, kn( ) − E ϕn0, kn( )( ) + βn F ϕn, kn( ) − F ϕn0, kn( )( )
(25)

where, for curvature Hnuc and parameter Cn from Eq. 5, we have

ϕn0 � −sin−1
��������
αn2 − Rn0

2

αn2 − βn
2

√
ϕn1 � sin−1

��������
αn2 − R1

2

αn2 − βn
2

√
αn � 1+ ����������

1−4CnHnuc

√
2Hnuc

βn �
1− ����������

1−4CnHnuc

√
2Hnuc

kn
2 � αn2 −βn2

αn2

(26)
Finally, the joint cortex-lamina surface capping the cell, Rc(z), is

derived from R1 to the cell apex where Rc � 0. From Eq. 9, the
constant C must be zero, such that the shape takes the form of a
spherical cap of radius Hcap

−1 and height

h � 1
Hcap

1 −
�����������
1 − HcapR1( )2√( ) (27)
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The volume and surface area of a spherical cap of height are h
and radius Hcap

−1 are

Vcap � 1
6
πh 3R1

2 + h2( ) Acap � π h2 + R1
2( ) (28)

The parametersCc, Cn and Rn0 can now be obtained by considering
the boundary conditions. Assuming no attachment between the nuclear
envelope and the cortex at the junction atR1 to sustain a normal force, the
lamina slope is continuous and the positions and tangents of the three
surfaces must be equal at (R1, z1), i.e.,

R

1 + dR
dz( )2( )1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
R1 ,z1

� HcellR1
2 + C � HnucR1

2 + Cn � HcapR1
2 (29)

thus

C � Hcap −Hcell( )R1
2 Cn � Hcap −Hnuc( )R1

2 (30)
Also, dzn

dRn
|Rn�Rn0

� 0 implies

R

1 + dR
dz( )2( )1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
R1 ,z1

� HcellR1
2 + C � HnucR1

2 + Cn � HcapR1
2 (31)

HnucRn0
2 + Cn � 0 Such that

Rn0 � R1

�������
1 − Hcap

Hnuc

√
(32)

At this point, the cortex and nuclear profiles can be calculated for
given values of parameters R1,Hcell, Hcap andHnuc, and attachment-
point boundary condition, (R0, z0). These values are determined
implicitly by applying four constraints, namely, setting
zn(ϕn,1) � z1, and by fixing the nuclear surface area and cell and
nuclear volumes

Vcell � Vcap + V ϕ0, ϕ1( ) + πR0
2z0

Vnuc � Vcap + V ϕn0, ϕn1( )
Anuc � Acap + πRn0

2 + A ϕn0,ϕn1( ) (33)

Here, Eqs 21, 22 are used to calculateA(ϕn0, ϕn1),V(ϕ0,ϕ1), and
V(ϕn0,ϕn1), and Eq. 28 is used for Vcap and Acap. It should be noted
that some ranges of (R0, z0) permit the solutions with Hcell >Hcap,
which would not be physically possible (and is not generally
observed) since it implies negative surface tension on either the
cortex or lamina. For cell spreading on a substratum, i.e., z0 � 0,
there is a minimum radius R0 whereHcell � Hcap, at which point the

FIGURE 9
Calculation of three-dimensional cell and nuclear shapes. (A) Analytical axisymmetric surfaces of constant mean curvature for the cortical surface
interface with the surroundings, (R,z), nucleus-cytoplasm interface containing the nuclear lamina, (Rn,zn), and joint nucleus-cortical interface with the
surroundings, Rc(z). Surfaces arematched at point (R1,z1), and Rn is the radius to which the nucleus presses against the substratum. The calculation shown
here is for V= 900 μm3, Vcell = 3.4V, ε=0.45, and spread radius of R0 = 30 μm (z0 = 0), (B) 3D numerical calculation for the same conditions obtained
minimizing the surface areas and simultaneously optimizing the triangular mesh by maintaining a centroidal Voronoi tessellation using the algorithm in
(Pan et al., 2012). Nuclear and cortical surfaces were solved simultaneously for the for the given adhesion footprint under the constraints of constant
nuclear surface area, nuclear volume, and cell volume. Themethod is validated by close agreement with the exact analytical solution for an axisymmetric
spread cell. (B) Elevated perspective of the same 3D cell from (A). (C) Illustration of algorithm for preventing the crossing of meshes. When a vertex point
(shown as red dot on projected triangle edges) crosses an opposing mesh triangle surface (indicated by blue line), with distance vector from the nearest
triangle surface a, the vertex is pushed back by distance −3

4 a, and each of the three vertices of the opposing triangle is pushed forward by + 1
4 a. In this way,

the vertex ends up on the plane of the triangle, and the forces balance on the two surfaces, with each vertex of the opposing triangle shares and equal
share of the force.
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lamina becomes under tension due to compression from the cortex
(see Figure 3). Below this radius, the cortex need not impinge on the
nucleus and the nucleus can take a wide range of possible shapes that
satisfy the constant volume and area constraints.

5.2 Calculation of cell and nuclear shape in
3D geometries

Unlike the axisymmetric case, three dimensional geometries do
not generally permit analytical solutions of cell and nuclear shapes.
Instead, surfaces of constant mean curvature for the cell and nucleus
were calculated using an optimization algorithm to minimize the
surface areas under the constraints of constant cell and nuclear
volume for a given cell geometry. Surfaces of constant mean
curvature with constraints were generated using the approach of
Pan et al. (Pan et al., 2012) which minimizes surface area of a
triangular mesh M(X) (with N vertices at positions, X � xi{ }Ni�1)
while simultaneously maintaining a centroidal Voronoi surface
tessellation (with Voronoi cells, vi{ }Ni�1). In this approach, a
surface is constant curvature is achieved by optimizing the
tessellation based on the following energy function of X:

E X( ) � N∑N

i�1∫y∈vi⊂M X( )
y − xi
���� ����2dσ y( ) (34)

where the integrals are over the area of the Voronoi cells
surrounding each of the vertices. Accounting for the volume and
area constraints, A(Xnuc) � Anuc and V(Xnuc) � Vnuc, the final cell
and nuclear vertex positions, Xcell and Xnuc, respectively, were
obtained by minimizing the total energy function,

Etot Xcell, Xnuc( ) � E Xcell( ) + γmax A Xnuc( ) − Anuc( ), δ/γ{ }E Xnuc( )
+ λnuc V Xnuc( ) − Vnuc( )2 + λcell V Xcell( ) − Vcell( )2

(35)
The area and volume stiffness parameters, γ, λnuc, and λcell were

progressively increased toward large values (>105) after each shape
convergence until |V(Xnuc) − Vnuc|/ Vnuc, |A(Xnuc) − Anuc|/Anuc,
and |V(Xcell) − Vcell|/ Vcell are all less than 10–4. The central term
ensures that a small background surface tension (reflected by small
value of parameter δ) is assigned during the optimization when
A(Xnuc)<Anuc to maintain a smooth mesh without wrinkles and
buckles during the optimization. Boundary conditions at the edges
of the cell adhesion area were imposed by fixing vertex positions on
edge of the cell adhesion area, and the Voronoi tessellation was
maintained by flipping edges when two opposite angles of two
adjacent triangles summed to be greater than π (see (Pan et al., 2012)
for algorithm details on flipping edges). The initial mesh of nearly
equilateral triangles was generated using the DISTMESH algorithm
(Persson and Strang, 2004). A steepest descent optimization
algorithm was used to converge to an equilibrium shape with
surfaces of constant curvature under the area and volume
constraints. The algorithm was validated by comparison to
analytical solutions of the axisymmetric case (Figures 9A, B).

In the optimization algorithm, opposing mesh surfaces were
prevented from overlapping by correcting displacements of vertices

which cross the triangle faces of the opposing mesh surface, while
simultaneously displacing the vertices of the opposing triangle in the
opposite direction (Figure 9C). If a is the vector orthogonal from the
surface to the uncorrected overlapping position of the vertex point, then
the vertex position correction is−3

4 a for the vertex, and each of the three
vertices of the opposing triangle was adjusted by +1

4 a. In this way, the
corrected vertex position ends in the plane of the opposing triangle, the
surface forces remain equal and opposite. Similarly, vertex positions that
cross solid surfaces (i.e., the substratum or themicropost) were adjusted
to the projected position on the solid surface.
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