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The traditional approach followed for mathematically modeling physico-chemical
processes on catalytic surfaces in®ol®es the choice of an infinitesimal surface area on
the catalyst and formulation of mass balances in®ol®ing adsorbate surface concentra-
tions. Such a strategy is inadequate when the catalytic surface itself changes dynamically

(with respect to adsorbate-dependent surface arrangement of its catalytic atoms and
)hence its characteristic kinetics. A rigorous mathematical framework to model such

( )processes is presented. The basic postulates of the theory are the a®ailability of 1 a
length scale o®er which the local infinitesimal area is of one surface type of another and
( )2 a time scale in which changes in fractional co®erage occurring on the length scale in
( )1 are deterministically describable by continuous ®ariables. A combination of proba-
bility and area-a®eraging is used to arri®e at a deterministic set of partial differential
equations for surface concentrations. The resulting equations include reaction and sur-
face diffusion, and new terms such as dilutionraugmentation of surface concentration
of species brought about by phase transformation. Such terms are significant in predict-
ing the nonlinear beha®ior of the system and in extracting the kinetics of surface reac-
tions from dynamic data. An application of the theoretical framework to CO oxidation

( )on Pt 100 is demonstrated and dilutionraugmentation terms were identified in the
purely temporal model. These terms are shown to be significantly important by simula-
tion.

Introduction

Physicochemical processes on a catalytic surface such as
adsorption, desorption, surface diffusion, and chemical reac-
tion when coupled with an adsorbate-induced catalyst surface
phase transformation give rise to nonlinear phenomena like
oscillatory behavior in the macroscopic reaction rate and spa-

Žtiotemporal pattern formation on the catalyst surface Ertl,
.1985; Gardner et al., 1990; Behm et al., 1983; Cox et al., 1983 .

Self-organization in the form of spiral waves, standing waves,
and chemical turbulence have been observed during a variety

Ž . Ž .of chemical reactions on the Pt 100 and Pt 110 single-crystal
Žsurfaces Ertl, 1993; Jakubith et al., 1990; Eiswirth et al.,

.1989 . The discovery of a rich variety of patterns as well as
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successful experiments that bridged the so-called surface-
science ‘‘pressure gap’’ have become possible as a result of
the advent of advanced experimental tools such as ellipsomi-

Ž .croscopy for surface imaging EMSI and photoelectron
Ž . Žemission microscopy PEEM Rotermund, 1995; Haas et al.,

.1998; Rotermund et al., 1995 . A widely studied reaction in
Žthis context is the CO oxidation on Pt catalysts Slinko et al.,

.1994 .
Various theoretical approaches have been used to model

spatiotemporal dynamics on well-defined surfaces. Prominent
Žamong these have been Monte Carlo methods Ziff et al.,

. Ž1986 , cellular automaton methods Mai and von Niessen,
.1991; Chavez et al., 1998 , and the traditional mass-balance

Žmethods Imbihl et al., 1985; Gruyters et al., 1996; Eiswirth
.et al., 1986 , where reaction-diffusion models were formu-

lated to describe the dynamics on surfaces. The formulation
of mass balances to describe catalytic surface phenomena in-
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Ž .volve a the identification of a differential area at any spatial
Ž .location on the catalytic surface, and b description of the

Ž .dynamics of surface concentration coverages of chemical
Ž .species on the area defined in a . Such a strategy cannot be

applied in a straightforward manner when formulating mass
balances on transforming surfaces for reasons explained in
the following.

On transforming catalytic surfaces, the physicochemical
identity of any identified differential area changes dynami-

Ž .cally depending on the continuously changing adsorbate sur-
face concentration and the chemical nature of the adsorbed

Ž .chemical species. Let us consider without loss of generality
that the catalytic atoms that form the differential area identi-

Ž .fied earlier in a can exist in two different configurations.
These two configurations, besides being different in their
atomic arrangements, have unique and very different ener-
getics for adsorption and desorption of reactants as well as a
chemical reaction between adsorbed chemical species. The
interconversion between the two catalytic surface configura-
tions is driven purely by the local configuration-specific adsor-
bate concentration. Thus, any mass-balance formulation re-
quires the dynamic description of surface-specific adsorbate
concentrations, in addition to the fractions of the catalytic
surface that exist in each of the configurations. We now ad-
dress a somewhat subtle issue, connected with mass balances
on surface-specific concentrations, that has not been ac-
counted for in prior formulations. The differential area of
any given surface type is itself changing continuously because
of interconversion between surface types. This calls for de-
scribing dynamically changing probabilities of the differential
area being of one type or another. Since the final goal is to
arrive at deterministic equations for describing coverage dy-
namics, a suitable probability averaging is necessary, as will
be seen in the mathematical development in this article.

To establish an experimental context for the preceding dis-
cussion, we briefly discuss the CO oxidation reaction on the
Ž . Ž .Pt 100 catalytic surface. The Pt 100 catalyst surface atoms

exhibits a hexagonal arrangement when the adsorbed CO
surface concentration is lower than a certain critical value
ŽCox et al., 1983; Hopkinson and King, 1993; Hopkinson et

.al., 1993 . This ‘‘hex’’ surface has a very low adsorption prob-
Ž . Ž .ability of oxygen 0.0001 compared to that of CO 0.78 .

However, during the course of the reaction, when the CO
surface concentration on the hex phase increases above a crit-

Ž .ical concentration, the Pt 100 surface atoms dynamically re-
arrange to form a 1�1 arrangement, which has comparable
adsorption probabilities for CO and oxygen. Oxygen adsorp-
tion on the 1�1 surface causes a significant chemical reac-
tion with adsorbed CO already present on the surface pro-
ducing CO , which is immediately desorbed. This causes ad-2
sorbate surface concentrations on the 1�1 surface to fall be-
low the critical value, which causes rearrangement back to
the hex phase. Experimental data specific to the 1�1 and
the hex surfaces, such as adsorption probability dependence
on surface-specific adsorbate concentrations, adsorption acti-
vation energies, chemical reaction rate constants, and de-
sorption rate constants is abundantly available for the CO

Ž . Žoxidation reaction on Pt 100 Gruyters et al., 1995, 1996; Im-
.bihl et al., 1986 .

Reactions on transforming surfaces have been theoretically
modeled in the literature using reaction-diffusion equations.

Ž .CO oxidation on Pt 100 was first modeled by Imbihl and
Ž .coworkers Imbihl et al., 1985 . This work holds its impor-

tance in the literature because it was the first systematic at-
tempt to predict rate oscillations on transforming surfaces. It
contained considerable experimental insight, not only in us-

Ž .ing the Langmuir�Hinshelwood LH mechanism, but also
because of the fact that it tried to use phase-transition kinet-
ics coupled with the LH mechanism to prove the existence of
oscillations as well as spatiotemporal patterns. This model

Žhas been a prototype for wide-ranging studies Krischer et
al., 1992; Bar et al., 1994; Shvartsman and Kevrekidis, 1999;

.Bangia et al., 1996 . The model equations used by Imbihl et
al. involved the definition of a spatially distributed � 1�1, theCO
‘‘global’’ coverage with � 1�1s� r� , where � is theCO CO 1�1 CO
‘‘local’’ coverage of CO on the surface. The authors do not
define a differential area over which this local coverage is
defined; in that sense it is not clear whether this coverage is

Žsurface-specific the phase transformation depends on sur-
.face-specific coverages . A rational strategy would be to first

identify a differential area, define the local coverage over it,
and then average it over a number of areas to come up with a
‘‘global’’ definition. The quantity � 1�1 does not really repre-CO
sent an area-averaged coverage; this is the local concentra-
tion normalized to the total area of 1�1 on the surface,
something that experiments do not measure. Hence, the mo-
tivation behind the definition of ‘‘global’’ coverages is am-
biguous. If a correct spatial averaging was done to come up
with the global coverages, it would involve the averaging of

Ž .nonlinear terms example chemical reaction that would yield
terms that would not be identical functions of the averaged

² 1�1 1�1: ² 1�1:² 1�1:physical quantity. In essence, � � � � � .CO O CO O
The model also does not account for dilutionraugmentation
terms.

Based on careful molecular beam studies, Gruyters et al.
Ž .1995 proposed and used a new power law for describing

Ž .surface-phase transitions. The model by Gruyters et al. 1996
accounted for such new experimental evidence. This is a much
more sophisticated model, not only because of the experi-
mental content, but also because a term similar to dilution
was included for the first time in their model. However, it is
unclear why the dilution term is present in every equation,
irrespective of whether the hex areas transform to 1�1 or
vice versa. As our work will prove, dilution terms cannot be
present in every equation independent of the status of the
transformation. Augmentation terms are missing in the equa-
tions.

In summary, we believe that past approaches to model
transforming surfaces were seminal in attempting to capture
the physics of adsorbate-induced phase transformation, but
were ad hoc, and, hence, plagued by inconsistencies that im-
peril assessment of the nonlinear interaction between reac-
tion and diffusion. Toward this, we have developed a deter-
ministic framework for analyzing adsorption, reaction, de-
sorption, and surface diffusion of gaseous species on catalytic
surfaces coupled with the transformation of surfaces based
on a procedure that involves local probability averaging as
well as area averaging. While the probability averaging is to
promote the deterministic framework, the area averaging is
designed to produce quantities more closely related to mea-
surement. We assume that the catalytic surface has two dif-

Žferent types of configurations, � and � we do this because
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Ž . Ž .Pt 100 and Pt 110 , for example, can exist in two phases: the
development of the theory itself is not limited by the number

.of configurations . By area averaging, we mean that around
each spatial point on the two-dimensional surface, one can
identify an averaging area, which is large enough to cover a

Ž .number of ‘‘small’’ areas of either type � or � . Each of the
small areas must either be of type � or �.

The phase transition is treated as a random event, but with
a transition probability that is a strong function of coverage;
hence we define the probability that the ‘‘small’’ area is of
either type � or �. We write master equations for relevant
probability density functions, which will be defined, and suit-
able probability, and area averaging of these will yield a de-
terministic model. This development naturally gives rise to

Žterms in the equations for the averaged surface concentra-
.tions that do not appear in prior mathematical treatments,

which arrived at model equations by ad hoc balances. The
terms in question arise out of dilution due to an increase in

Žthe fraction of a given surface type following surface trans-
.formation or augmentation due to a decrease in the fraction

of a given surface type. We demonstrate that the phenomena
represented by such terms play a significant role in determin-
ing the oscillatory behavior in surface reactions, and conse-
quently cannot be neglected in any description of the dynam-
ics of phenomena belonging to the generic class of surface
phase transformation coupled with physicochemical pro-
cesses. This is supported by simulation results of temporal

Ž .oscillations in CO oxidation on Pt 100 where we evaluate
the effect of the new terms.

Theoretical Development
Basic postulates

Consider an ‘‘infinitesimal’’ surface of area dA on the sur-
Ž .face Figure 1 . This area is very small compared with the

total surface. If we denote the entire catalyst surface domain
by � , with area measure A , thenT T

A s dA 1Ž .HT
�T

There are two basic postulates associated with dA.
Ž .1 dA is either of � or � type, that is, it cannot accommo-

date both types of surface. The spatial scale of dA is small

Figure 1. Area dA around a spatial point x along with
( )the averaging area � x .0

Ž .compared with the averaging area, � x , which surrounds0
Ž .the spatial location x Figure 1 .

Ž .2 It is possible to find a time scale in which the changes
occurring with respect to coverage of reacting species on the
area dA can be described by deterministic, continuous vari-
ables. The frequency with which the reaction surfaces switch
between � and � types is comparatively smaller.

We define the local surface coverage vector on dA due to
n gaseous species as follows

w x� s � ,� , . . . , � 2Ž .1 2 n

where � refers to coverage of the ith species. The area dAi
can transform from type � to type � and vice versa; the
transformation is a stochastic event, and the associated prob-
ability densities are strong functions of the surface coverage
vector � . These probability densities describe the probability

Ž .that the area dA is of type � or � with coverage between �
and � qd� .

Probability functions
The surface phase transformations between � and � are

dependent on the coverage of the chemical species adsorbed
Ž .on the surface. Typically, one of the phases say � is stabi-

lized by a high local coverage of the adsorbed species, while
Ž .the other say � is stabilized by low coverage of the reac-

tants. There is in addition a spatial distribution of coverage
over the surface space, meaning that the area dA around any
given spatial location x has a different coverage from that at
xqdx. Based on the preceding facts, and keeping in mind
that the phase transition is a time-dependent process, we can
introduce the following probability distribution functions:

Ž . �� x,t;� d� �Probability area dA around x at time t is�

of the � type with fractional
coverages between � and �

4qd�
Ž . �� x,t;� d� �Probability area dA around x at time t is�

of the � type with fractional
coverages between �

4and� qd� .
In the foregoing, d� sd� d� d� , . . . , d� . We also de-1 2 3 n

fine the probability functions

p x ,tŽ .�

� 4�Probability area dA around x at time t is of the � type

p x ,tŽ .�

� 4�Probability area dA around x at time t is of the � type

Then, it follows that

p x ,t s d�� x ,t ;�Ž . Ž .H� �
�� F1i

p x ,t s d�� x ,t ;� 3Ž . Ž . Ž .H� �
�� F1i
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The infinitesimal area dA around x must be either of type
� or type � , since it can exist only as either of the two phases.
Hence

p x ,t q p x ,t s1 4Ž . Ž . Ž .� �

We now define the fraction of �-type area in the averaging
Ž .domain � x at location x as0

1
a x ,t � p xq r ,t dA 5Ž . Ž . Ž .H� � rA Ž .� xo o

where dA is an infinitesimal area around the point xq rr
Ž .and A is the area of � x . Similarly, we denote the frac-0 0

tion of �-type area in the averaging domain by

1
a x ,t � p xq r dA 6Ž . Ž . Ž .H� � rA Ž .� xo o

We have a qa s1 at every point on the surface.� �

Definition of probability and area-a©eraged quantities
Since we want to arrive at a deterministic description of

coverage dynamics, we define probability-averaged coverages
as follows

� � x ,t ;� d�Ž .H i �
�� F1i

� x ,t sŽ .i ,� p x ,tŽ .�

� � x ,t ;�� d�Ž .H i �
�� F1i

� x ,t s 7Ž . Ž .i ,� p x ,tŽ .�

Ž .where � x,t is the probability-averaged coverage ofi,�
species i on area dA of type � . Clearly, this is a surface-
specific definition of coverage.

The probability-averaged coverage vector on the surface of
type � would then be

� s � ,� ,� , . . . ,� 8Ž .� 1,� 2,� 3,� n ,�

We now define local probability and area-averaged coverages
as follows

1
² :� x ,t � � xq r ,t p xq r ,t dA 9Ž . Ž . Ž . Ž .Hi ,� i ,� a ra A Ž .� x� 0 o

1
² :� x ,t � � xq r ,t p xq r ,t dAŽ . Ž . Ž .Hi ,� i ,� b ra A Ž .� x� 0 o

10Ž .

Equations 9 and 10 define the deterministic surface-specific
coverage of the ith species on areas of types � and � , re-

Ž .spectively, within the averaging domain � x , surrounding0
the point x in surface space.

Physicochemical Processes
Processes on the catalytic surface

In a typical continuous gas-phase catalytic reaction pro-
cess, physicochemical processes like adsorption, desorption,
chemical reaction, and surface diffusion occur on the catalyst
surface. In what follows, we discuss the representation of the
kinetics of each of these processes, with special emphasis on
migration processes.

We are concerned with how fractional coverage of each
species changes due to various processes on the catalyst sur-
face. Toward this, we let

�̇ � ; x ,tŽ .i

sRate of change of surface coverage by the ith gas on dA
as a function of prevailing surface coverage vector � of
the ith gas.

Hence, we have

d� d� d� d�1 2 3 n
�̇ � ; x ,t � , , , . . . ,Ž .

dt dt dt dt

˙The functions � must be obtained by considering adsorp-i
tion, desorption, reaction, and migration processes for each
of the surfaces � and �. For this purpose, we use kinetic
models for the processes and the rate constants used are
based on experimental values from the literature.

Adsorption. The rate of adsorption of the ith gas on sur-
face type � is represented by

r sk � S� � P 11Ž . Ž .i ,ads i ,ads i i

� � Ž .where k is the rate constant for adsorption, S � is thei,ads i
sticking probability of the ith gas onto the surface of type � ,
and P is the partial pressure of the ith gas in the reactor.i

Desorption. The rate of desorption is given by

r sk � � 12Ž .i ,des i ,des i

where k � is the desorption rate constant.i,des
Chemical Reaction. Consider m chemical reactions occur-

ring in the system. We can represent a reaction among s
species in the jth reaction as

s

� A s0, js1, 2, . . ., m 13Ž .Ý ji i
is1

where � is the stoichiometric coefficient of species A . If Aji i i
is a reactant, � is negative, and if A is a product, � isji i ji

Ž .positive. If r is the jth surface-specific intrinsic reactionj
rate, then we can write the reaction rate with respect to the
species A asi

m

r s � r , is1, 2, . . ., n 14Ž .Ýi ,chem ji j
js1
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Figure 2. Migration of COrrrrroxygen from neighboring ar-
( )eas in the averaging domain � x to dA.0

Migration. Transport along the surface occurs through
diffusion where the adsorbed species move via a molecular
‘‘hopping’’ process. Between two catalytic surface areas,
which are dissimilar with respect to the arrangement of the
surface atoms, this phenomenon can be thought of as a

Ž‘‘migration’’ of species from one type of area to another Im-
.bihl, 1985 .

We represent the migration of adsorbed gas molecules be-
Ž .tween any two areas dA and dA in � x , as shown in Fig-r 0

ure 2. Let area dA be of type � . The migration of species i
outward from dA is proportional to its local coverage � . Leti
the rate constants for migration from � to � and from � to
� be k and k , respectively. Then the rate of migra-�y� �y�

tion out of dA is

r out sk � qk � 15Ž .i ,mig �y� i �y� i

Ž .The migration from all of the areas dA contained in � xr 0
into dA depends on whether dA is of type � or type �. Letr
dA be of type � , then the migration into dA is given byr

k � � xq r ,tdA Ž .�y� i �inr dAs dA d�H Hi ,mig r NA a xq r ,tŽ .Ž .� x0 �0 � F1Ý i
is1

16Ž .

which is obtained as follows:
Ž .1 We consider an area dA at xq r. The probability thatr

it is of type � with coverage vector between � and d� is
Ž .given by � xq r,t;� d� . The rate of transfer from dA to� r

surrounding areas is then given by k � � d� .�y� i �

Ž . Ž .2 There are several other areas dA of type � in � xr 0
that compete with dA of type � for migrating species i from
areas of type �. The migration is thus associated with a ‘‘hit’’
probability, which must be multiplied with k � � d� . As-�y� i �

suming uniform likelihood, this hit probability is given by
Ž Ž . .dAr a xq r,t A , an area ratio of the competing areas. In-� 0

tegration over all areas dA gives the form of the term in Eq.r
16.

A similar term is obtained when considering migration from
dA that are type � to dAr

dA k � � xq r ,tŽ .�y� i �inr dAs dA d�H Hi ,mig r NA a xq r ,tŽ .Ž .� x0 �0 � F1Ý i
is1

17Ž .

The net rate of change in coverage can now be written as

˙ in out� s r y r q r y r y r 18Ž .i i ,ads i ,des i ,mig i ,mig i ,chem

We have considered the area and probability averaging of the
�̇ function in Eq. 18, with special emphasis on migrationi
terms in the Appendix.

Surface transformation of the catalyst surface
The kinetics of transformation of the surface from type �

to type � and vice versa may be described by the following
quantities:

Ž .k 	 � dt� �

�Transition probability that an � surface with the sur-
face coverage vector � at time t transforms to the

Ž� type during t to tqdt k is the rate constant�

.describing the process .
Ž .k 	 � dt� �

�Transition probability that a � surface with the sur-
face coverage vector � at time t transforms to the

Ž� type during t to tqdt k is the rate constant�

.describing the process .

( ) ( )Differential Equations for � x,t;� and � x,t;�� �

Ž .We can now identify the differential equations for � x,t;��

Ž .and � x,t;� as follows: Let us consider the area dA at time�

t and let it be of type � . This is a result of the situation at
time tydt when the area dA could be of type � or type �.
The coverage on dA changes in this time interval, dt, from � �

at time tydt to � at time t. Area dA in this interval can
either remain type � or transform to type �. Thus

� x ,t ;� d�Ž .�

wProbability that at time t , dA is of the type � and has

xcoverage between � and � qd�

s� x ,tydt ;� � d� �Ž .�

wProbability that at time tydt , dA is of the type � and has

� � � xcoverage between � and � qd�

w x� 1yk � dt� �

wProbability that during tydt to t , the area dA does not

xtransform to type �

q� x ,tydt ;� � d� �Ž .�
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wProbability that during tydt to t , the area dA was of type

x�

� k � dt� �

wProbability that during the time interval dt , the area trans-

xforms from type � to type �

Transposing the first term on the righthand side of the pre-
ceding equation to the left, dividing by dt and d� �, and let-
ting dt™0, we get

� x ,t ;� d� y� x ,tydt ;� � d� �Ž . Ž .� �y1w xd� lim
dtdt™ 0

syk 	 � x ,t ;� qk 	 � x ,t ;� 19Ž . Ž . Ž .� � � � � �

where we have used the fact that lim � �s� and lim d� �

dt™ 0 dt™ 0
sd� . It follows from Eq. 19 that

dy1w xd� � x ,t ;� d� syk 	 � x ,t ;�w xŽ . Ž .� � � �dt

qk 	 � x ,t ;� 20Ž . Ž .� � �

where

nd 
 

˙s q � � 21Ž . Ž .Ý i ,�dt 
 t 
�ijs1

Note, in particular, the volume d� contained within the dif-
ferentiation with respect to time on the lefthand side of Eq.

Ž .20. Thus, the derivative Eq. 21 must be applied to d� using
the relationship, which is obtained in a manner similar to

Ž .that in fluid mechanics Aris, 1962 , relating the rate of vol-
ume strain to the divergence of the straining field, which in

˙ ˙Žthis case is given by � � is the time rate of change ofi,� i,�
w x.the coverage of the ith species on dA see Eq. 18 . Thus, we

have

nw xd d� 
y1 ˙w xd� s � � 22Ž . Ž .Ý i ,�dt 
�iis1

Combining Eqs. 20, 21, and 22 gives

n ˙d� 
 �� i ,�q syk 	 � qk 	 � 23Ž .Ý � � � � � �dt 
�iis1

Using Eq. 21 and rearranging, we can arrive at

n
� 
� ˙q � � syk 	 � qk 	 � 24Ž .Ý i ,� � � � � � � �
 t 
�iis1

Similarly

n
� 
� ˙q � � sk 	 � yk 	 � 25Ž .Ý i ,� � � � � � � �
 t 
�iis1

The preceding Eqs. 24 and 25 are the master equations in the
sense that all other averaged equations must be obtained from
them. For example, we can derive equations for the area
probability that dA at any time is of type � or �.

Probability Averaging
In this section, we demonstrate the probability and area-

averaging process applied to Eqs. 24 and 25.

( ) ( )Equations for p x,t and p x,t� �

Ž . Ž .We obtain the equations for p x,t and p x,t by inte-� � n

grating the previous equations over the region 0F � F1.Ý i
is1

This is equivalent to taking the zeroth moment. The result is
given by

n n n
 p� nq d� � x ,t ;1y � , �Ž .HÝ Ł Ýn ls1, jk � i lž /
 t ks1, jjs1 is1, j� F1Ý i
is1, j

n
n˙ ˙�� 1y � , � y� x ,t ;� � 0Ž . Ž .Ž .Ý ls1, jj ,� i l � j ,�ž /

is1, j

syk � p qk � p 26Ž .� � � � � �

where

� p s d�	 � , � p s d�	 � 27Ž .H H� � � � � � � �
�� F1 �� F1i i

Similarly, we obtain

n n n
 p� nq d� � x ,t ;1y � , �Ž .HÝ Ł Ýn ls1, jk � i lž /
 t ks1, jjs1 is1, j� F1Ý i
is1, j

n
n˙ ˙�� 1y � , � y� x ,t ;� � 0Ž . Ž .Ž .Ý ls1, jj ,� i l � j ,�ž /

is1, j

sk � p yk � p 28Ž .� � � � � �

In the preceding equations, the integral terms on the left-
hand side must vanish because the rate of change of the
probability that the area dA is of type � or the � type must
depend only on the transition rates on the righthand side.
Also, since we have used a continuous differential equation
to describe the dynamics of coverage, even the shortest time
must cause a change on the surface with respect to coverage,
making it impossible to maintain for any length of time the

n

situation at the boundary of the region 0F � F1, that is,Ý i
is1

n

along � s0, � s0, . . ., � s0 and � s1. For example,Ý1 2 n i
is1

n

along � s1, the coverage is total, which will definitelyÝ i
is1

result in ‘‘instantaneous’’ removal of the gas. Similarly on �i
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s0, there must be an immediate addition of the ith gas,
making it impossible to maintain a condition of zero coverage
by the ith gas. Thus we must impose the boundary conditions
that

n

� ,� s0 along � s0, � s0, . . ., � s0 and � s1Ý� � 1 2 n iž /
is1

29Ž .

We have thus the differential equations


 p
 p �� sy syk � p qk � p 30Ž .� � � � � �
 t 
 t

( ) ( )Equations for � x,t and � x,ti ,� i ,�

Ž . Ž .Equations for � x,t and � x,t must be obtained byi,� i,�
taking the first moment of Eqs. 24 and 25. We will derive
equations only for the quantities specific to the alpha phase;
equations for the beta phase can be similarly derived. The
first moment of Eq. 24 yields

n
 

˙� p q d�� � �H Ýni ,� � i i ,� �½ 5
 t 
�iis1� F1Ý i

is1

syk � 	 � d� qk � 	 � d� 31Ž .H Hn n� i � � � i � �

� F1 � F1Ý Ýi i
is1 is1

Integrating by parts one obtains, using the divergence theo-
rem and the boundary conditions in Eq. 29



˙� p s � � d� ykH Hn ni ,� � i ,� � �
 t � F1 � F1Ý Ýi i

is1 is1

�� 	 � d� qk � 	 � d� 32Ž .H ni � � � i � �

� F1Ý i
is1

ŽSince it will be of importance in the sequel see the following
.section , we also take the second moments of Eq. 24



2 2˙� p s 2� � � d� yk � 	 � d�H Hn ni ,� � i � i ,� � i � �
 t � F1 � F1Ý Ýi i

is1 is1

qk � 2	 � d� 33Ž .H n� i � �

� F1Ý i
is1



˙ ˙� � p s � � q� � � d�H ni ,� j ,� � i j ,� j i ,� �
 t � F1Ý i

is1

yk � � 	 � d� qk � � 	 � d� 34Ž .H Hn n� i j � � � i j � �

� F1 � F1Ý Ýi i
is1 is1

Area averaging of Eqs. 32 through 34 based on the defini-
tions in Eqs. 9 and 10 will give rise to deterministic, spa-
tiotemporal differential equations for describing the dynam-
ics on the surface. This is described in the next section.

Area Averaging
Probability and area a©eraging of any arbitrary nonlinear
function

˙ ˙In general, � and � in Eqs. 32 through 34 will bei,� i,�
Ž .nonlinear functions of � , the coverage vector see Eq. 18 .

Hence, we demonstrate the area and probability averaging of
Ž .any arbitrary nonlinear function f � . For statistically aver-

Ž .aging f � , we can write

d� f � � x ,t ;�Ž . Ž .H
�� F1iF x ,t s 35Ž . Ž .

p x ,tŽ .

For the present we do not need to distinguish between sur-
face type, so we can drop the subscript on the master proba-
bility function. It is necessary to take the local area-average

Ž .of this quantity. Before we do this, we expand f � by Taylor
² Ž .:series about the area-averaged quantity � x,t at the point

x

n 

² : ² : ² :f � s f � q � y � f �Ž . Ž . Ž .Ž .Ý i i 
�iis1

2n n1 
2² : ² :q � y � q � y �Ž . Ž .Ý Ýi i i i22 
�iis1 is1, j

2

² : ² :� � y � f � qH .O.T . 36Ž .Ž .Ž .j j 
� 
�i j

Thus, the local area-averaged expression for any arbitrary
nonlinear function of coverage can be written as

2n1 
22² : ² : ² :F x ,t s 1q � y �Ž . Ž .Ý i i 2½ 2 
�iis1

2n 

² : ² :² : ² :q � � y � � f � qH .O.T . 37Ž .Ž .Ý Ž .i j i j 5
� 
�i jis1, j

No subscript has been included on the area-averaged or
probability-averaged quantities in the preceding for general-
ity. We notice that the righthand side contains only moments
of second order. In using this formula, it must be borne in
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mind that

² :F x ,t p xq r ,t dAŽ . Ž .H r
Ž .� xo

s dA d� f � � xq r ,t ;� 38Ž . Ž . Ž .H H nr
Ž .� xo � F1Ý i

is1

so that

² :F x ,tŽ .
1

s dA d� f � � xq r ,t ;�Ž . Ž .H H nrA a x ,tŽ . Ž .� x0 o � F1Ý i
is1

1
s dA F xq r ,t p xq r ,t 39Ž . Ž . Ž .H rA a x ,tŽ . Ž .� x0 o

where a will earn the subscript � or � on � .

Surface diffusion
² :The average coverage � is distributed in space, and,

hence, spatial gradients can be thought of as giving rise to a
macroscopic diffusion term. This term arises from the area
averaging of the migration term, which is a local phe-
nomenon occurring on the scale of dA. In that respect, it can
be thought of as a macroscopic interpretation of migration.
Consider the time rate of change of coverage on an area dAr
of type � surrounding a point xq r in physical space. We

Ž .can write see Eq. 18

k�y�
�̇ � ; xq r ,t s� � ; xq r ,t q dAŽ . Ž . H Hi i r NA Ž .� r0 o � F1Ý i

is1
� � xq r ,t ;� kŽ .i � �y�

� d� q Ha xq r ,t AŽ . Ž .� r� 0 o

� � xq r ,t ;�Ž .i �
dA d� 40Ž .Hr N a xq r ,tŽ .�� F1Ý i

is1

Ž out .where � s r y r y r y r is the net change ofi i,ads i,des i,mig i,chem
coverage as a result of adsorption, desorption, chemical reac-
tion, and migration out of dA, and the other two terms de-

Žscribe the rate of migration into dA refer to Eqs. 16 andr
˙.17 . Consider the substitution of � in Eq. 32. The term ini

question here is the first term on the righthand side of Eq.
32. The area averaging of this term yields the following

˙dA d� � � s dAH H H Hn nr i � r
Ž . Ž .� x � xo o� F1 � F1Ý Ýi i

is1 is1

k � ��y� i �
� d� � q dA d� xq r ,tŽ .H Hi r NA aŽ .� rž 0 �o � F1Ý i

is1

k � ��y� i �q dA d� � 41Ž .H Hr �N /A a xq r ,tŽ .Ž .� r0 �o � F1Ý i
is1

We consider the third term inside the brackets on the
Žrighthand side a similar analysis applies to the second term

. Ž . Ž .inside the brackets as well . Assuming a xq r,t sa x,t� �

for simplicity, we have

k�y�
dA d�� � xq r ,t ;�Ž .H Hr i �Na x ,t AŽ . Ž .� r� 0 o � F1Ý i

is1

² :sk � xq r ,t 42Ž . Ž .�y� i ,�

We expand the area-averaged coverage on dA surroundingr
any point xq r as

² : ² : ² :� xq r ,t s � x ,t q r 	� � x ,tŽ . Ž . Ž .i ,� i ,� i ,�

1
2² :q rr :�� � x ,t qo r 43Ž . Ž . Ž .i ,�2

Evaluating now the third term on the righthand side of Eq.
41, using Eq. 43, we finally get

² :k dA d� � xq r ,t � skŽ .H H H�y� r i ,� � �y�NŽ . Ž .� r � ro o� F1Ý i
is1

² :� dA � xq r ,t d��Ž .Hr i ,� �N
� F1Ý i

is1

² :sk � x ,t dA p xq r ,t qkŽ . Ž .H H�y� i ,� r � �y�
Ž . Ž .� r � ro o

� ² :dA p xq r ,t r 	� � x ,tŽ . Ž .r � i ,�

k�y� 2² :q dA p xq r ,t rr :�� � x ,t qo rŽ . Ž . Ž .H r � i ,�2 Ž .� ro

44Ž .

From Eq. 44, we see that the coefficients associated with
² : ² :� � and �� � can be interpreted as representingi ,� i ,�

‘‘surface motion’’as well as ‘‘surface’’diffusion that occur with
velocity

©� k� dA p xq r ,t r 45Ž . Ž .H r �
Ž .� ro

and diffusion coefficient as

D� k� dA p xq r ,t rr 46Ž . Ž .H r �
Ž .� ro

It is likely that the velocity just defined is negligible because
of the fact that

dA rs0 47Ž .H r
Ž .� ro
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Dilution and augmentation terms
Area and Probability A®eraging. We establish here terms in

the averaged equations, which are of crucial importance to
the framework of this article. They arise because phase trans-
formation changes the fraction of a specific phase, say � , in
the averaging area. The concentrations specific to the � phase
will then be either increased when the � area fraction de-
creases, or decreased when the � area fraction increases. We
therefore refer to these terms as augmentation and dilution
terms, respectively. These terms naturally arise from the
probability and area-averaging process, as demonstrated be-
low.

Consider the area averaging of the probability-averaged
Ž .equation Eq. 30


 p�
dA syk dA d�	 � qkH H H Hr � r � � �
 tŽ . Ž . Ž .� x � x �� F1 � xo o i o

� dA d�	 � 48Ž .Hr � �
�� F1i

Ž .where � � is a nonlinear function of � in general. Follow-�

ing the treatment in the subsection on surface diffusion, we
Ž .expand � � by Taylor series about the area-averaged quan-�

² Ž .: Ž .tity � x,t at the point x see Eq. 36 . Using only the ze-
roth-order term in the expansion for simplicity

² :dA d�	 � � � ; xq r ,t s	 �Ž . Ž . Ž .H H Hr � � �
Ž . Ž .� x �� F1 � xo i o

² :� dA � ; xq r ,t s	 � a x ,t A 49Ž . Ž . Ž .Ž .Hr � � � 0
�� F1i ��

Similarly

dA d�	 � � � ; xq r ,tŽ . Ž .H Hr � �
Ž .� x �� F1o i

² :s	 � a x ,t A 50Ž . Ž .Ž .� � � 0

Using Eqs. 49 and 50 in Eq. 48 and using the definition in
Eq. 5, we get


 a� sk 	 a qk 	 a 51Ž .� � � � � �
 t

Typically, the kinetics of the phase transformation have been
experimentally observed to be such that at any given instant,
we have

k 	 s0 for c�1; k 	 s0 for cG1 52Ž .� � � �

Ž . Ž .where cs f � ,� ; � s � ,� ,� , . . .,� be-crit crit 1,crit 2,crit 3,crit n,crit
ing a critical coverage vector governing the transformation

Ždetermined experimentally Imbihl et al., 1986; Gruyters et
.al., 1995 . Thus for c�1, areas of type � transform to that of

type � , while for cG1, the areas of type � transform to type

�. For cG1, Eq. 51 becomes


 a� sk 	 a 53Ž .� � �
 t

Next, we consider the area averaging of the probability-aver-
aged Eq. 32



˙dA � p y dA � � d�H H H nr i ,� � r i ,� �
 tŽ . Ž .� x � xo o � F1Ý i

is1

syk dA � 	 � d�H H n� r i � �
Ž .� xo � F1Ý i

is1

qk dA � 	 � d� 54Ž .H H n� r i � �
Ž .� xo � F1Ý i

is1

Ž .We represent � 	 � using the Taylor series expansion abouti �

² Ž .:� x,t as before, and using only the zeroth-order term, we
have

² : ² :� 	 � s � 	 � 55Ž . Ž .Ž .i � i �

Substituting Eq. 55 in the first term on the righthand side of
Eq. 54, we have

k dA � 	 � d�H H n� r i � �
Ž .� xo � F1Ý i

is1

² : ² :sk � 	 � dA � d�Ž .H H n� i ,� � � r �
Ž .� xo � F1Ý i

is1

² :sk � 	 a A 56Ž .� i ,� � � 0

Similarly, the second term on the righthand side of Eq. 54 is

k dA � 	 � d�H H n� r i � �
Ž .� xo � F1Ý i

is1

² : ² :sk � 	 � dA � d�H HŽ . n� i ,� � � r �
Ž .� xo � F1Ý i

is1

² :sk � 	 a A 57Ž .� i ,� � � 0

Substituting Eqs. 56 and 57 in Eq. 54, and using the defini-
tion of area-averaged coverage in Eq. 9 and rearranging, we
have

² :
 � 1i ,� ˙a y dA � � d�H H n� r i ,� �
 t A Ž .� x0 0 � F1Ý i
is1


 a�² : ² : ² :sy � yk � 	 a qk � 	 a 58Ž .i ,� � i ,� � � � i ,� � �
 t
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For c�1, where k 	 s0, using Eq. 53 and rearranging, we� �

get

² :
 � 1i ,� ˙y dA � � d�H H nr i ,� �
 t A a Ž .� x0 � 0 � F1Ý i
is1

² : ² : ² :² : � � y �� 
 a 
 a 
 ai ,� i ,� i ,�i ,� � � �sy q s
a 
 t a 
 t a 
 t� � �

59Ž .

For c�1, areas of type � transform to an area of type � ,
Ž² : . Ž .hence 
 a r
 t will be positive. The term � ra r 
 a r
 t� i,� � �

² :increases the coverage, � , by adding to it the coveragei,�
² :� ; this term will be called ‘‘augmentation.’’ At the samei,�
time, owing to the increase in the area fraction of type � ,
there is a decrease in the area-averaged coverage, described

Ž² : . Ž .by � ra r 
 a r
 t on the righthand side; we call thisi,� � �

term ‘‘dilution.’’ It is seen that these terms arise naturally as a
consequence of the area and probability-averaging process. If
we carry out a similar area averaging for coverage on the �
surface, we have


 1
˙² :� a y dA � � d�H H ni ,� � r i ,� �
 t A Ž .� x0 0 � F1Ý i

is1

² : ² :sk � 	 a yk � 	 a 60Ž .� i ,� � � � i ,� � �

For the c�1 case, using Eq. 53 in the preceding equation
and rearranging, we have

² :
 � 1i ,� ˙y dA � � d�H H nr i ,� �
 t A a Ž .� x0 � 0 � F1Ý i
is1

² : ² :� 
 a � 
 ai ,� � i ,� �s y s0 61Ž .
a 
 t a 
 t� �

We do not have dilutionraugmentation terms appearing on
the righthand side of the previous equation; this is expected,
since the areas of type � do not transform to those of type �
for the c�1 case. For the cG1 case, these terms would be

² Ž .: ² Ž .:present in the equations for � x,t , and not � x,t .i,� i,�

( )Application to CO Oxidation on Pt 100
Assumptions in the formulation of the temporal model

Rate oscillations have been experimentally observed dur-
Ž .ing CO oxidation on Pt 100 , but often in the absence of spa-

Žtiotemporal pattern formation Imbihl et al., 1986; Lauter-
bach and Rotermund, 1994; Lele et al., 2001; Lele and

.Lauterbach, 2002 . Hence, we can assume that for certain
control parameters, the areas on the surface are similar to
well-mixed reactors; there are no large spatial gradients in
coverage. This has also been the approach followed in other

Ž .modeling efforts Imbihl et al., 1985; Gruyters et al., 1996 .
Uniform coverage implies that there is no spatial distribution

² :Ž .of � x,t . Hence, the local coverage on dA must be equali
to the average coverage, that is

² :� � � 62Ž .i i

There are two important implications of the preceding equa-
tion.

1. There is no ‘‘macroscopic’’ diffusion term.
2. The area and probability averaging of any arbitrary non-

Ž . Ž . Žlinear function f � defined on any area dA in � x herer 0
Ž .f � could represent a nonlinear reaction rate term, or a

.nonlinear adsorption term , reduces to

dA d� f � � x ,t ;�Ž . Ž .H Hr
Ž .� x Ý� F10 i

² : ² :s f � p xq r ,t dA s f � aA 63Ž . Ž .Ž . Ž .H r 0
Ž .� x0

Thus, the average of a nonlinear function is now the function
of the average. The two previous statements eliminate the
presence of second moments in the model.

Steps in the formulation of the model
We outline here a systematic application of the framework

in the formulation of a spatiotemporal model for CO oxida-
Ž .tion on Pt 100 ; suitable assumptions then lead to a temporal

model. The same steps can be used to model any other reac-
tion of interest, on any type of transforming surface.

The expression for the net rate of change of coverage on
dA of the ith species can be written as

˙ in out� � , x ,t s r y r q r y r y r 64Ž . Ž .i i ,ads i ,des i ,mig i ,mig i ,chem

The kinetic expressions are based on a suitable mechanism
Ž .for the reaction; CO oxidation on Pt 100 follows the LH

mechanism, which is as follows

CO q�lCO 65aŽ .g ad

O q�™2O 65bŽ .2, g ad

CO qO ™CO 65cŽ .ad ad 2, g

� Ž .The denotes the type of site, which for Pt 100 can be
either hex or 1�1. If dA is of type 1�1, the rate of adsorp-
tion of the ith speciies from dA is given by

r sk1�1 S1�1 � ,� P 66Ž .Ž .i ,ads i ,ads i CO O i

where the subscript i stands for adsorbed CO and oxygen.
S1�1 thus represents the adsorption probability of the ith gasi
on the surface of type 1�1. The rate of desorption of CO
from dA is given by

r sk1�1 � 67Ž .i ,des i ,des CO
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The dependence of the adsorption probabilities of CO and
oxygen on the surface coverage have been obtained by fitting

Ž .experimental data from the literature Gruyters et al., 1996 .
The rate constants for adsorption, desorption, migration, and
the phase transformation kinetics have also been obtained

Ž .from the literature Gruyters et al., 1996 . The rate of migra-
tion into dA of type 1�1 from neighboring areas dA thatr
are of type hex can be written as

k � � xq r ,tŽ .hexy1�1 i hexinr sdA dA d� 68Ž .H Hi ,mig r N a xq r ,tŽ .1�1� F1Ý i
is1

Using the definition of area and probability-averaged cov-
erage, and the assumption that the area fraction a is not a1�1
function of the spatial location x for the well-mixed case, the
rate of migration into dA that is type 1�1 from the neighbor-
ing areas that are type hex can be written as

k � � xq r ,tŽ .hexy1�1 i hexinr s dA d�H Hi ,mig r N a xq r ,tŽ .1�1� F1Ý i
is1

hex² :k � a Ahexy1�1 i hex 0s 69Ž .
a1�1

The rate of reaction is given by

r sk� � 70Ž .i ,chem CO O

˙We can now arrive at an expression for � as a function ofi
the local coverage on dA using Eqs. 66 through 70. Substitu-

˙tion of � into the area and probability averaged Eqs. 58 andi
60, along with the assumption that the surface behaves ho-
mogeneously with respect to coverage during reaction rate
oscillations yields the model equations.

The temporal model
On applying the steps outlined above, we arrive at the fol-

lowing ordinary differential equations

1�1 CO 1�1 OŽ² : . Ž² : .For cs � r� q � r� �1CO crit O crit

1�1 1�1² : ² :d� � �1�1 CO Osyk � 1y y9 1�1 crit critž /dt � �CO O

d� d�hex 1�1sy 71Ž .
dt dt

1�1² :d �CO 1�1 1�1 1�1² : ² :sk p S yk � yk �1 CO CO 3 CO 5 COdt

�hexhex 1�1 1�1² : ² :² :qk � yk � � 72Ž .4 CO 7 CO O�1�1

1�1² :d �O 1�1 1�1 1�1² :² :sk S p yk � � 73Ž .6 O O 7 CO O2 2dt

hex² :d �CO hex hex hex² : ² :sk S p yk � yk �1 CO CO 2 CO 4 COdt

�1�11�1 hex hex² : ² :² :qk � yk � �5 CO 7 CO O�hex

1�1 hex² : ² :� y � d�CO CO hexq 74Ž .
� dthex

hex² :d �O hex hex hex² :² :sk S p yk � �6 O O 7 CO O2 2dt

1�1 hex² : ² :� y � d�O O hexq 75Ž .
� dthex

1�1 1�1² : ² :� �CO O
cs q G1CO O� �crit crit

d�1�1 nhex² :sk � �8 hex COdt

d� d�hex 1�1s 76Ž .
dt dt

1�1² :d �CO 1�1 1�1 1�1² : ² :sk p S yk � yk �1 CO CO 3 CO 5 COdt

�hexhex 1�1 1�1² : ² :² :qk � yk � �4 CO 7 CO O�1�1

hex 1�1² : ² :� y � d�CO CO 1�1q 77Ž .
� dt1�1

1�1² :d �O 1�1 1�1 1�1² :² :sk S p yk � �6 O O 7 CO O2 2dt

hex 1�1² : ² :� y � d�O O 1�1q 78Ž .
� dt1�1

hex² :d �CO hex hex hex² : ² :sk S p yk � yk �1 CO CO 2 CO 4 COdt

�1�11�1 hex hex² : ² :² :qk � yk � � 79Ž .5 CO 7 CO O�hex

hex² :d �O hex hex hex² :² :sk S p yk � � 80Ž .6 O O 7 CO O2 2dt

1�1 1�1² : ² :where � , � represent the area and probability-CO O
averaged coverage of CO and oxygen on 1�1 areas, respec-

hex hex² : ² :tively; � , � represent the area and probability-CO O
averaged coverage of CO and oxygen on the hex areas, re-
spectively; � represents the area fraction of 1�1 on the1�1
surface. The rate constants are available in the literature
Ž .Imbihl et al., 1985; Gruyters et al., 1995, 1996 . The value of
the parameter c decides whether the areas will transform
from type 1�1 to hex and vice versa; for c�1, 1�1 areas
transform to hex, while for c�1, the hex areas transform to
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Table 1. DilutionrrrrrAugmentation Terms in the Model
Equations

Term. Term in Parameter
No. the Model Eq. c

1� 1 hex² : ² :� y � d�CO CO hex
1 22 c�1

� dthex

1�1 hex² : ² :� y � d�O O hex
2 23 c�1

� dthex

hex 1�1² : ² :� y � d�CO CO 1�1
3 25 c�1

� dt1� 1

hex 1�1² : ² :� y � d�O O 1�1
4 26 c�1

� dt1� 1

1�1. Of special note are the form of the migration terms
Ž .and the dilutionraugmentation terms see Table 1 . For c�1,

the 1�1 area transforms to hex, since the total adsorbate
coverage is not enough to stabilize the 1�1 area. The a®erage
coverage of CO on hex in Eq. 74 will be reduced by this in-
c re a se in th e h e x a re a , a s re p re se n te d b y

hexŽ² : .Ž . Ž .y � r� d� rdt d� rdt is positive for c�1 .CO hex hex hex
This is the dilution effect. The transforming 1�1 areas also
add their adsorbed CO molecules to the hex phase. This is

1�1Ž² : .Ž .represented by the term � r� d� rdt , and is theCO hex hex
augmentation effect, because it results in an increase in CO
coverage on hex. These effects can be easily understood by
considering Figure 3. The shaded areas are of type 1�1, the
lighter areas are of type hex, with black dots representing CO
coverage on 1�1 and white dots CO coverage on hex. When
a part of the 1�1 area transforms to hex, it increases the hex

Žarea, thus reducing the average CO coverage on hex dilu-
.tion ; at the same time the transforming 1�1 area adds its

coverage to that on the hex area, increasing coverage on hex

Ž .augmentation . The average coverage on the 1�1 areas does
Žnot change by dilution and augmentation these terms are

.absent in Eqs. 72 and 73 , since for c�1 there is no transfor-
mation of hex areas to 1�1. A similar explanation applies for
the presence of the term

hex 1�1² : ² :� y � d�O O hex

� dthex

in Eq. 75, which describes the rate of change of oxygen cover-
age on the hex area. For c�1, the hex areas transform to
the 1�1 area. The average coverage of CO on the 1�1
phase in Eq. 77 will now be reduced by dilution, resulting
from the increase in the 1�1 area, as represented by

1�1Ž ² : .Ž .y � r� d� rdt . The coverage will be increasedCO 1�1 1�1
by an augmentation resulting from a direct addition of ad-
sorbed molecules on the transforming hex being directly to

hexŽ² : .Ž .the 1�1 phase as represented by � r� d� rdt .CO 1�1 1�1

Simulation
Figure 4 shows the result of integrating the model for fixed

reaction conditions of Ts510 K, p s1�10y5 mbar, andCO
p s2.5�10y5 mbar, where p and p are the partialO CO O2 2

pressures of the reactant gases CO and oxygen, and T is the
catalyst temperature. Shown are the area and probability-
averaged surface-specific coverages, as well as the area frac-
tions as a function of time. There is a perfect anticorrelation
between simulated CO and oxygen coverages during an oscil-
latory cycle, on either type of surface; this has been observed

Žexperimentally Lauterbach and Rotermund, 1994; Lele and
.Lauterbach, 2001 . When the transformation from the hex

phase to the 1�1 phase is underway, the 1�1 surface is pre-
dicted to be poisoned by CO at a coverage of approximately
0.5. This has been experimentally confirmed by Imbihl et al.
Ž .1986 , who observed that 1�1 areas grew in size with a con-

Figure 3. Dilution and augmentation effect.
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Figure 4. Simulation of rate oscillations using the ordi-
nary differential Eqs. 19–28 for reaction con-
ditions of Ts510 K, p s1�10�5 mbar andCO
p s2.5�10�5 mbar.O2

stant coverage of approximately 0.45. The oscillations are of
a relaxation type, revealing the multi-time-scale behavior that
is characteristic of the difference in the kinetics of the phase
transformation, as compared to adsorption, desorption, and
chemical reaction. The period of oscillation of 15�20 s is close
to experimentally observed values. Figure 5 shows a simula-
tion in which the differential equations were integrated for a
slow temperature ramp, without allowing steady state. This is
an analog of experiments, which are often performed in this
manner to access qualitative information about the system.
The simulated reaction rate is seen to be sensitive and de-

Žcreasing with increasing temperature, as expected Lele and
.Lauterbach, 2001 . Figure 6a and 6b show the changing shape

of the oscillation under different temperature conditions. To
demonstrate the effect of terms like dilution, augmentation,

Figure 5. Effect of temperature ramp on reaction rate
(the model was integrated for a temperature
increase from 490 K to 515 K, at fixed , p sCO

�5 � 5 )1�10 mbar and p s2.5�10 mbar .O2

( )Figure 6. a Simulation of oscillatory CO rate at Ts2
( )500 K; b oscillatory CO production at Ts2

510 K, for p s1�10�5 mbar and p s2.5C OO 2

�10�5 mbar.

and migration, we strip the foregoing model equations of such
Žterms and examine their dynamic behavior as shown in Fig-

. Žure 7 relative to that of the proper equations as shown in
Figure 6b. With the terms present, the reaction-rate oscil-
lates, with a high average reactivity, as seen in Figure 6b.
Without the terms, the surface goes into a low reactivity
steady state.

Summary
We have developed a general mathematical framework for

analyzing adsorption, desorption, reaction, and surface diffu-
sion of gaseous species on catalytic surfaces, coupled with
catalytic surface-phase transformation based on a procedure
that involves both local probability and area averaging. While
the probability averaging is to promote the deterministic
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Figure 7. Dynamic behavior in the absence of terms in
the model equations at Ts510 K, for p s1CO
�10�5 mbar and p s 2.5�10�5 mbarO2
( )compare with Figure 6b .

framework, the area averaging is designed to produce quanti-
ties more closely related to measurement. This development
naturally gives rise to terms such as dilutionraugmentation in
the equations for averaged surface concentrations that do not
appear in prior mathematical treatments that arrived at model
equations by ad hoc balances. Such terms are of significance
to predicting the nonlinear behavior of the system and in ex-
tracting the kinetics of surface reactions from dynamic data.
We have demonstrated an application of the theoretical

Ž .framework to CO oxidation on Pt 100 by deriving a purely
Ž .temporal model for CO oxidation on Pt 100 . Dilutionraug-

mentation terms were identified in the temporal model and
shown to be significantly important by simulation.
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Appendix
In the absence of all kinetic terms, that is, adsorption, de-

sorption, and chemical reaction, the net rate of change of
Žcoverage of species i on the total surface area including sur-

.faces of either type should be zero. This implies that the
form of the dilutionraugmentation and migration terms,
which evolve out of the framework, must be consistent with
conservation of mass balance. That this is indeed the case is
shown below.

Consider the total rate of change of coverage of CO for
c�1. The equation for the total rate of change of CO cover-
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age is

total 1�1 hex² : ² : ² :d � d d � d � d� d�CO CO CO 1�1 hex1�1 hex 1�1 hex² : ² : ² : ² :s � � q� � s� q� q � q � A1Ž .Ž .1�1 CO hex CO 1�1 hex CO COdt dt dt dt dt dt

Ž .Using the model equations Eqs. 71 through 80 , we have in
the absence of adsorption, desorption, and chemical reaction

total 1�1 hex² : ² : ² :d � d � d � d� d�CO CO CO 1�1 hex1�1 hex² : ² :s� q� q � q �1�1 hex CO COdt dt dt dt dt

hex 1�1² : ² :� � y � d�hex CO CO 1�11�1 hex² : ² :s� yk � qk � q1�1 5 CO 4 COž /� � dt1�1 1�1

� d� d�1�1 1�1 hexhex 1�1 1�1 hex² : ² : ² : ² :q� yk � qk � q � q �hex 4 CO 5 CO CO COž /� dt dthex

s0 A2Ž .

It is instructive to consider the substitution of Eq. 18 into
the first term of the probability-averaged Eq. 32. Let dA be
of type � , then the migration terms take the form of Eqs. 16
and 17, then

�̇ � d� s r y rH H Žn1,� � i ,ads i ,desnÝ � F1is1 i � F1Ý i
is1

q r in y r out y r � d� A3Ž ..i ,mig i ,mig i ,chem �

Considering only the migration terms in the preceding
Ž . Ž .equation and assuming a xq r,t sa x,t as before, for sim-

plifying the analysis, we have

k � �1 �y� i �in outr y r � d� s dA d�H H H HŽ . ni ,mig i ,mig � r Nn A aŽ .Ý � F1 � rž 0 �is1 i 0� F1 � F1Ý i Ý i
is1 is1

1 k � ��y� i �q dA d� yk � yk � � d�H Hr �y� i �y� i �NA aŽ .� r /0 �0 � F1Ý i
is1
a�² : ² :sk � p qk � p yk � p yk � p A4Ž .�y� i ,� � �y� i ,� � �y� i ,� � �y� i ,� �a�

Area averaging this equation yields

a�in out ² : ² :dA r y r � d� s dA k � p qk � p yk � p qk � pH H HŽ .r i ,mig i ,mig � r �y� i ,� � �y� i ,� � �y� i ,� � �y� i ,� �N ž /aŽ . Ž .� r � r �o o� F1Ý i
is1

a�² : ² : ² : ² : ² : ² :s k � qk � yk � yk � a A syk � a A qk � a A A5Ž .�y� i ,� �y� i ,� �y� i ,� �y� i ,� � 0 �y� i ,� � 0 �y� i ,� � 0ž /a�

It is seen that the migration into and out of dA between ar-
eas of type � compensates for each other exactly under the

Ž . Ž .assumption that a xq r,t sa x,t .� �
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